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ABSTRACT

This dissertation presents algorithms lor solving site-selection
and similar fixed-charge problems with upper bound constraints. These
problems typically arise in the following way: a number of sites are
known to be available at which facilities can be established for per-
forming a given service. The set of facilities must provide service
at. a specified level of effectiveness. Fixed costs are associated with
each site 1f a facility is opened there, and variable costs are asso-
crated with operations. Upper-bound constraints on the allowable size
of a facility at each site must be taken into account. The problem to
be solved by the operations researcher is to select a subset of the

avarlable sites which meets the constraints and minimizes the total

cost.

The basic approach to obtaining algorithms for the exact solution
of the fixed charge problem 1s to formulate them as mixed integer pro-
grams and to solve these programs by decomposing them into a master
problem (which is an integer program) and a series of subproblems which
are linear programs. As in all decomposition schemes, heavy use is
made of the fact that large portions of the constraint matrix contain
only zero elements. In addition, a theorem of Dantzig and Hirsch
which states that an optimal solution of the fixed-charge problem must

occur at an extreme potnt, plays a central role.

To achieve computationally feasible algorithms, the number of
vertices that have to be examined must be reduced to manageable pro-
portions while still]l guaranteeing that the optimal solution will be
found. This was accomplished by adapting the bound-and-scan integer
programming algorithm by F. S. Hillier to the fixed charge problem.
The decomposition i1dea was applied to the following four classes of

problems and detailed algorithms are presented for each:



o A fixed charge problem with linear variable costs in
which a fixed charge is associated with each contin-
uous variable that appears at non-zeroc level.

o The same problem with separable concave or convex
costs rather than linear costs.

e A warehouse location problem in which variable costs
and constraints are of the transportation type. A
fixed charge 1s associated with each warehouse
opened, i1rrespective of the number of customers served.

o The fixed charge transportation problem where a fixed
charge 1s associated with each route rather than each
warehouse.

The first, second, and fourth algorithms were coded 1n ALGOIL for
the Burroughs B-5500 computer system and sample problem calculations

rut.. Results of these calculations are presented.

A brief discussion of duality considerations for the fixed charge

problem 1s 1ncluded.

!
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' INTRODUCTION

A, Statement of the Problen

The purpose ol this dissertation is to present algorithms for

solving the site-selection and similar fixed-charge problems.  These

problems typically arise in the following way: o number, possibly a
Farge number, of sites are known to be available at which tacilities
can be established tor performing a given service,  The sct of facil
ities must provide service at a specilied level of effectiveness.,

-

ariable costs are associated with operations.  Upper bound constrain

X('(I
‘osts are associated with each site if u facility is opened there. and

s

on the allowable size of a facility at each site must be taken into ac

count. The problem to be solved by the operations rescarcher s 1o

select a subset of the avarlable sivtes which meets the constraints and

which minimizes the total cosu,

This problem arises in many contexts and can be formulated as a
mixed-integer programming problem, that is, a programming problem in
which some of the varituables take on values | and 0 (corresponding to
site being opened or not) and the rest are continnous variables,  |f
there are no upper bounds on the size of the Tacilities, then the bra
and bound algorithm presented by Efroymson and Ray 111 15 applicuble.
However, 1mposing upper bounds on facility size invalidates the
Efroymson-Ray method. 1t is this upper bounded problem to which this

dissertation 1s primarily addressed.

More generally, the lixed-charge problem considered in this dis

sertation may be stated as:

Minimize

w3
3}
o~
=
~—
+
v
-y
-2

nch



subject to

E) ,»’~,"'1.p

Yy, = for j = 1

0 otherwise

>
1Y

0

where A is an m x n matrix, !

X and M are n-vectors, b 1s an m-vector,
the c(*) are functions of a single variable, the f} are positive con-

stants, p < m, and the Sj are subsets of {1,2, ..., m}.

This general structure encompasses each of the special cases for
which algorithms are developed in this dissertation. The A matrix is
considered either as a general matrix or as a matrix having spectal
structure, such as all elements non-negative or a transportation-problem
matrix. Both the case in which a fixed charge is associated with each
component of x (p = m and the sets SJ each contain one element) and the
case where a fixed charge 1s associated with disjoint ‘groups of com-
ponents of x are investigated. Finally, both linear and separable non-

linear variable cost structures are considered.

B. Past Work

The fixed-charge problem has appeared in the Operations Research
literature at least since 1954 when Hirsch and Dantzig (2] formulated
the problem and showed that if the objective function is linear, an
optimal solution would occur at an extreme point of the constraint set,
Ax >b. This important result is used in each of the algorithms presented

here.

In more recent years, a number of algorithms have been developed for
solving certain fixed charge problems, especially the warehouse location
problem (see Section I-C and Appendix A). Prominent among the approxi-
mate algorithms for this latter problem are those presented by Kuehn and
Hamburger [3], Manne [4), and Feldman, Lehrer, and Ray [5]. 1In addition,

Efroymson and Ray [1] have developed an exact algorithm tor warehouse

1 . . . .
In this dissertation vectors and matrices are denoted by lower-case and upper-case boldface type,
respectively.
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location applicable to the case of no bounds on allowable warehouse

size. An approximate algorithn has been presented by Balinski 161 for
the Tixed charge transportation problem.  Another noteworthy contribution
is an exact algorithm for the fixed chavge problem with lincar costs
recently developed by Marty (710 Marty s approach is to solve the probh-
lem as a linear program (i.e.. withont fixed charges), to bound the

total cost, and then to scarch systematically among the extreme points

adjacent to the linear program optimum lor the minimum total cost.

in principle it is also possibie to obtain an optimal solutinon Lo
a linear version of the lixed-charge problem by applying o general,
mixed integer, lincar programming algorithm! such as Benders' parti
tioning algorithm [8] discussed in Appendix B, However, the state of
the art in mixed-integer programming is such that existing algorithms

are computationally feasible only for small Tixed chavge problems,

In summary, in addition te a number of approximate algorithms,
three exact algorithms (Efroymson Ray, Murty, Benders) were found in
Fiterature Tor solving fixed charge problems.  As indicated in Part A,
one of these (Efroymson Ray) is Timited to cases without capacity
constraints. The Murty algorithm has been proposed bhut, as far as is
known, has not been tested. This algorithm appears most suited to

cases 1n which Tixed costs are small relative to variable costs,

Betore discossing the decomposition approach used in this dis
sertation, a few practical examples of [ixed charge problems are

presented.

C. fExamples

The literature survey presented in Appendix A shows that the lixed-
charge problem occurs in many operational situations. A few of these
are listed here to indicate the range of fixed charge problems en
countered in practice. Further discussions of same of these problems

may be found in Appendix A,

1. The Warehouse (or Plant) Location Problen

Select a subset of warchouse or plant locations from among a list

of available locations. Variable costs tnelude the cost of the goods

1

For a survey of these algorithms see Balinsk \QM and Beale 121)



or equipment stored or the transportation cost of shipping goods to

customers. A single fixed cost is associated with each warehouse
opened. Constraints include total quantity of goods required from the
warehouses and maximum size of the warehouses. The objective 1s to

minimize total cost (fixed plus variable costs) while satisfying the
given constraints. To fix 1deas, the terminology in this dissertation
will be in terms of warehouse locations, and reference will be made to

sites and maximum warehouse size.

2. The lock Box Problem

Select a set of Post Office lock box locations from among a list

of potential locations to which customers send checks for bank clearance.

' on accounts receivable at the cost

Such a system reduces “float time’
of tixed charges for the lock boxes and both fixed and variable bank

charges.

3. Fire (or Police) Station Problem

Given a set of potential fire-station locations, the area that can
~be covered from each location, and the distribution of value (or
population) protected by each potential location, select a set of
stations that provides an equal level of protection throughout a city.
Available lot size limitatlions result in upper bounds on the size of
each potential station. A fixed charge (for real estate, construction,

etc.) 1s 1incurred for each station opened.

4. Detection-Station Placement Problem

Find the optimum location of n detection stations, say for de-
tecting nuclear detonations. Fach station has associated with it a
distribution p(r) which defines the probability of detection as a func-
tion of the distance r. A fixed charge is associated with each station

opened.

5. The Fixed-Charge Transportation Problem

This problem differs from the standard Hitchcock transportation
problem in that a fixed charge (e.g., for route establishment or

franchise) is associated with each route over which goods are shipped.



6. Billboard location Problem

Given a fixed budget and a set of potential billboard locations,
select a subset of billboards and rental times which maximizes the ef-
fectiveness (e.g.,- in units of people-exposures) subject ta the budget

constraint,

7. Interceptor-Missile Site Problem

Select a set of interceptor misasile sites and stockpiles {rom a
list of available site locations that provide a balanced defense against
a specified threat. Upper bounds on stockpiles that can be emplaced
result from acreage limitations of available real estate. Fixed charges
result from establishment costs and radar requirements; variable costs

result from the size of the missile force emplaced.

The algorithms presented in this dissertation are not applicable to
all of these examples. Specifically, problems in which site locations
can be anywhere on a plane (such as the detection station problem dis-
cussed by Smallwood [9]) are not considered. The billboard problem is
more closely related to the dual of the problems considered (see Sec-
tion V), since its objective is to maximize effectiveness at fixed budget

rather than minimizing cost at fixed effectiveness

D.  Decomposition Approach

The basic approach to obtaining algorithms for the exact solution
of the fixed-charge problem is to formulate them as mixed-integer programs
and to solve these mixed-integer programs by decomposing them. Decompo-
sition ideas are not new; Dantzig [10, p. 449] states that decomposition
was first proposed in 1958 1in two papers, one by L. S. Ford and
D. R. Fulkerson and the other by W. S. Jewell, as a method of solving
multi-stage commodity-flow problems. These are large linear programming
problems. In 1662, Benders [8] presented an algorithm for solving the
mixed-integer programming problem by decomposition, in which he reduced

the mixed problem to the solution of a series of iInteger programs.

The present work differs from Benders’ in that the approach is to
decompose the problem into a master problem and a series of linear pro-
grams rather than a series of integer programs. As in all decomposition

schemes, heavy use 1s made of the ftact that large portions of the



constraint matrix contain only zero elements. [In the fixed-charge
problem, the constraint matrix typically contains a large number of
constraints which define the requirements on the continuous variables.
In addition, there are integer constraints related to the fixed charges
and, finally, there are constraints which relate the fixed and variable
costs. The last reflect the conditions under which the fixed charges
are incurred., They can be thought of as providing a weak coupling

between the discrete and continuous parts of the problem,

It is the weak coupling that leads to decomposition. Specifying
the values of the integer variables so that the integer constraints
are satisfied produces a sub-problem which involves only continuous
variables and hence can be solved by the now classical simplex method.
Once the variable cost has been minimized by the simplex method and
the fixed cost specified through the integer variables, the total cost
i1s known. A systematic search through the allowable integer values,

then, 1s all that 1s required to tind an optimal solution.

The key question to be resolved for computability in any search
scheme is how to reduce the size of the search to manageable proportions,
while guaranteeing that the optimal solution will be lound. Branch-and-
bound methods provide the necessary technique tor examining the integer
parts of the problem. Of the various such algorithms currently avail-

able, the bound-and-scan algorithm by F. S. Hillier [11] was selected

for use 1n many of the numerical calculations. This algorithm is partic-

ularly efficient 1f a good sub-optimal solution 1s avatilable. Some

attention is therefore paid to finding initial feasible solutions.

E. Organization of the Dissertation

Section Il presents the formulation of the decomposition i1dea and

shows how it can be applied to four classes of problems:

e A fixed-charge problem with linear variable costs in which
a fixed charge 1s associated with each continuous variable
that appears at non-zero level.

e A warehouse location problem in which variable costs and
constraints are of the transportation type. A fixed charge
1s assoclated with each warehouse opened, irrespective of
the number of customers served.



e The fixed-charge transportation problem in which a fixed
charge is associated with each route rather than each
warehouse.

® The first problem with separable concave or convex costs
rather than linear costs.

In Section III, detailed algorithms for solving these problems
are presented. The algorithms for the first and fourth problems in-
corporate the Hillier algorithm to generate combinations of open and
closed sites. For the second problem, only a portion of the algorithm
is used. The fixed charge transportation problem is treated by a

special bound-and-search technique.

Results of sample calculations using these algorithms are presented
in Section IV. The algorithms were coded in ALGOL for the Burroughs
B-5500 computer system.

Section V presents a brief discussion of duality considerations.

Conclusions and directions for further work are presented in
Section VI. Appendices present a literature survey (Appendix A), a
discussion of the Benders and Murty algorithms (Appendices B and C)

and a detailed proof (Appendix D) of an assertion in the text.



{1 FORMULATION

A. General Decomposition

Consider the mixed-integer linear programming problem in which all

variables have finite upper bounds:!

Minimize C.,x + Coy W
subject to
Alx + “zy > b
; x < m1
> Problem 1
y < m,
; x, y > 0
!
y integerj

If at least one vector (X,y) exists which satisfies the constraints, an
optimal solution to the problem must exist since all components of X and
y are bounded above and below. Furthermore, since each component y of
Yy is bounded between 0 and m , and y is defined only at integer lattice

points, there are only a finite number of feasible values of y.

Let Y, be a particular vector that satisfies the constraints,
§ <y < m, and y integer. For this fixed value of y, the original

problem reduces to:

. . A
Minimize C,X ,
subject to A x < b - Ay,
Problem IT
x < om
| x > 0
J

1 Cl, m1 and X are ny " vectors; Co, m2,y are ng - vectors; A1 is an (m X nl) matrix; and AQ 1s an

(m X n2) matTix,




and Problem II is a linear program that can be solved by the simplex
method. If Problem Il does not have a feasible solution for this par-
ticular ¥y, then Problem I also does not have a feasible solution for
y,. [If, however, an optimal solution X, is found for Problem Il, then

the value of the objective function for Problem I becomes ¢ X, + C,y,.

The definitions of Problems I and Il immediately suggest an algo-

rithm for solving the mixed-integer programming problem:

(1) Find a feasible solution to Problem I.'

(2) Enumerate the finite set of vectors y, that
satisfy the constraints 0 <y < m,, y integer.

(3) For each y, found in Step 2, solve Problem II.
If Problem IT is infeasible for this value y,,
so is Problem I. 1If an optimal solution X, to
Problem IT is found, evaluate C X, + Co¥,.

(4) The optimal solution 1is

min {c x, + ¢,y }
171 271
all yl
Although this decomposition procedure 1s guaranteed to produce an
optimal solution to Problem I, it does not, on the face of it, appear
particularly attractive computationally for problems of even moderate
size. For example, a problem containing ten integer variables each

with range 0 -1 would require attempting to solve 1024 linear programs;

for twenty such variables the number of linear programs to be solved

jumps to 10°.

However, the decomposition procedure can be made workable for a
wide range of mixed-integer programming problems, particularly fixed-
charge problems, by making use of the detailed structure of the con-
straints to reduce drastically the number of vectors y, (and hence the

number of linear programs) examined.

B. A Linear Fixed-Charge Problem

The linear fixed-charge problem is a special case of Problem 1 1in

which each component of y can take on only the values 0 or 1 and the

! This step could be dispensed with. If the exhaustive search of Step 2 does not turn up a feasible
solution to Problem II, no feasible solution exists.

9




value 1 is assumed only if some combination of components of x 1s non-

zero. I1f a fixed charge, f , is incurred for each activity engaged 1n,
. 2

the problem can be stated in the form':

Minimize cx + fy ,

subject to Ax - b

X <m
0 if . = 0
y, =
1 if x> 0
x > 0

so that the activities must satisfy certain constraints and cannot ex-
ceed upper bounds. A typical problem of this sort 1s the warehouse
location problem with stockpile costs. The vector X corresponds to the
supplies to be located at potential warehouses; b to the demands that
must be met, and M to the maximal capacity of the warehouses. The ob-
jective is to select a set of warehouses that satisfy the demands, stay

within the size constraints on individual sites, and minimize total

cost. The total cost has two components: the variable-charge component,

resulting from the allocation of stockpile Lo the warehouses; and the
fixed-charge component resulting {rom the costs associated with opening

up each warchouse selected.

For present purposes, this f{ixed-charge problem can he written in

the form:?
. . . \
Minimize fy + cx )
subject to Ax > b
~ X b 0
My = Problem 111
y <1
x,y >0
y integer . J
lThis formulation assumes n Moe In general, ny ocan he greater than n,, with Y, vaking on o value

1 if any one of several components of x is non-zero. The fixed-charge problem with transportation
costs discussed in Part I} is an example.
2 . .
In Problem III, M denotes a diagonal matrix with value m. in the jth pesition on the diagonal
J

corresponding to the upper bound on %,

10




This statement of the problem presupposes that all components of T and

C are strictly positive (no free goods). In this case, the constraints
My - x >0 and y 7 | assure that, in the optimal solution, X will be
bounded by m and that y will be 0 if x is 0. This results from the
fact that 1f x, 1s 0 in the optimal solution, then y, ~ 0 satislies the
constraints and minimizes the objective Tunction. On the other hand,

if x, is positive, it cannot exceed m  because the maximum feasible value

of Y, is 1.

If the integrality requirement on ¥y were dropped, Problem TIl would
become a conventional linecar program and could be solved by the simplex

method. The linear program solution’

will typically call for fractional
values of some or all components of y. Although this is not a feasible
solution to Problem ITl it can be made into one by simply rounding each
fractional y, up to 1. Thus, a feasible solution to this mixed-integer
problem can be found readily.. Furthermore, the value of the objective

function for this initial solution, (call 1t L ), also provides a bound

on the total fixed charge fy.

This bound is found by solving a second linear program. Consider

the case 1n which all fixed charges are incurred (e.g., all warehouses

are opened). For this case, Problem T11 reduces to the linear program:
Minimize cX
subject to Ax > b Problem 1V
0 < x < m

If Problem TII has a solution when considered as a linear program, then
so will Problem IV, since 1t has the same constraint set and objective

function in X and all the y components are fixed at their upper bound

of 1.

The variable cost cx, found in this way is the minimum variable
cost, since it corresponds to the case 1n which all activities are avall-
able. If we now subtract c¢x; from L, we obtain at once an upper bound,
FMAX, on the fixed cost fy in the optimal solution of Problem 1I[. where

FMAX = L, - ¢x

Y] 0

2

If no feasible solution to the linear program exists, there 1s no feasible solution to Problem LTI,

11



Thus, we can adjoin an additional constraint to Problem III, namely,

fy < FMAX. This constraint enables us to reject at once any value of
the vector y for which fy > FMAX. Similarly, a lower bound on the value
of fy, in the optimal solution, call 1t FMIN, can be established. In
terms of the warehouse location problem, if 1t 1s possible to supply all
demands from any site then FMIN is equal to the fixed cost of the cheap-
est warehouse and FMIN provides no new information. lowever, 1f this
situation does not obtain, the constraint fy > FMIN can be adjoined to
Problem III. A loose FMIN bound is found by solving Problem [1l as a
linear program with the variable-costs vector set to zero. Methods for
finding FMIN are discussed 1in more detail under computational considera-

tions (Section II1I-DI).

Although no method has been found for improving FMIN as calcula-
tions proceed, 1t 1s possible to improve FMAX. Each time a value of
the objective function, L., of Problem TII is found which is better than
any found thus far, FMAX can be reduced to L, - ¢x,, and the constraint

fy < FMAX tightened.

Summarizing in terms of the algorithm presented 1n Part A, for the

fixed-charge problem the procedure is

(1) Find a feasible solution to Problem I11. This can
be done by solving Problem 1! as a linear program
and rounding all fractional values of y up to 1.

(2) Find values for FMAX and FMIN and adjoin the con-
straints fy > FMIN, fy < FMAX.

(3) Enumerate the finite set of vectors y, that satisfy
the constraints 0 <y < 1, y integer, fy < FMAX,
fy > FMIN.

(4) For each y, found in Step 3, solve the problem:

Minimize cX ,
subject to Ax -~ b
xooomy,
x > 0
If no feasible solution exists, find a new y,. 1If an optimal solu-

tion X, 1s found, evaluate ¢ x, + f y . Determine if FMAX can be
reduced and, 1f 1t can, tighten the FMAX bound.

12



(5) The optimal solution is

minimum {CXl + fyl}
all ¥,

These steps are the essence of the computational method presented in
Section IJI-D. Further refinements are introduced there to speed the
computations, particularly in reducing the number of vectors y, for

which linear programs must be solved.

C. Non-Linear Variable Costs

The discussions thus far have been restricted to linear variable
costs. Concave and convex costs which can be approximated by piecewise
linear costs can also be treated. The only restriction imposed is that

the objective function be separable.

Consider a single variable as shown in Iigure 1. Two cases are
shown, corresponding to concave and convex cost function c¢(x). The
cost functions both have breakpoints at a and b, and the variable x 1is
bounded at m. The fixed cost f is incurred only if x > 0. The two

cases represented in Figure | will now be discussed in turn.

c(x) c(x)
f f
1 | L oy | 1 [
a b M a b M
a. CONCAVE COSTS b. CONVEX COSTS

TA-5205- 30

FIG. 1 PIECEWISE LINEAR APPROXIMATION TO COST FUNCTION
OF ONE VARIABLE



1. Concave Costs

The concave cost case is of particular importance because 1t 1s
often encountered in warehouse location problems. The concave cost func-
tion in Figure 1 can be replaced by three separate linear cost functions
as shown in Figure 2. Note that the lower envelope of the three cost
functions is the original concave cost. Replacing the variable «x
with three variables (x,, x,, and x,) allows the concave cost func-
tion to be replaced by three linear segments, each having a differ-
ent assoclated fixed cost (f], f2, and f3 in Figure 2). Thus, the
problem has been expanded to six variables, three of them f{ixed-charge
variables, to remove the non-linearity. Since the objective function

1s defined only on line segments,
]
lower bound constraints on x x ctx) ¢
b 2’ / C3

and x; to assure that these vari- fy

1t is necessary to add upper and

ables stay within their regions f,
of definition. Furthermore, it is
necessary to 1mpose the constraint
2y <1 sothat only one of the
éﬁ;ee segments 1s selected 1n any

solution.

X
The foregoing discussion for Ta- 5205-31
a concave cost function 1n one

variable generalizes at once to FIG. 2 REPLACING A CONCAVE COST
FUNCTION BY SEVERAL LINEAR
COST FUNCTIONS

separable concave objective func-
tions. Suppose that the objective

function 1s

n
2z g (u ) + v )
- TRy f) J
j
where ¢ (u}) is a concave function 1in one variable and v, is a0 -1
]
variable. The terms of the objective function can be represented as
n
J
. = > J ¥ j < J < J
¢j(u}) = clx! , A S

14



and
n.]. »
foo, = 2 flyl .y, o= 0,1
[ vet t
where
n, = Number of segments in the jth concave
function,
m{ = Upper end of segment i 1in the jth con-

cave function,
J =
m{ 0

Substituting into Problem III yields

n nj > ™
Minimi ze 2 ledad v fiyl] ,
j=1 =1
subject to A'X" > B
my - x> 0 jo= L= 1 ooy
“ml_yl x> 0 jo= 1, ...n v = 2, ...n > Problem V
-1V T — J

n

J

b3 ylo <1 j = 1, n

=1 t

Jo>
XL, yl - 0
y{ integer , J
where X' 1s the column vector (xi, xé, o xi , x%, coeoxl ), and A’
. . J J
is the matrix whose columns are (A, ... A, A, ... A,, . A An),
each column Aj being repeated n, times, and b is the same as in
Problem I1II.
Examination of Problem V shows its structure to be that of Prob-

lem TTII and hence the algorithm for solving that problem can be applied

here. Computationally, Problem V is a much larger problem than

Problem III because each variable has been replaced by several

15



variables to remove the non-linearity in the objective function and
because constraints have been added. Computational aspects are dis-

cussed further in Section II1.
2. Convex Costs .

In the absence of fixed charges, problems involving separable con-
vex costs and linear constraints can be treated by the techniques of
separable convex programming [10, Chap. 24]. The bounded-variable method
of separable convex programming calls for representing each function of

one variable 1n the convex objective function by a piecewise linear func-

tion. For the ith variable, the line segments are expressed in Lerms of
the variables A and have, slopes S .. Then x 1is replaced by 2 A |
1) k L} t j=1 t)
and c¢(x.) is replaced by 2 S A if there are k segments. 11 these
i = vy g

. J, .
changes are made 1in the fixed-charge problem, then the fixed-charge con-

straints can be represented as

k
My - DI < 0 o= 1,2, , n
i i1 Lj
y, £ 1
y, = 0 or 1

Therefore, the use of a single fixed-charge variable for each con-

vex cost function is sufficient to treat the problem.

D. A Fixed-Charge Problem with Transportation Costs

For the warehouse location problem in particular, the variable costs

considered are typically transportation costs from the warehouses to the

customers, with the fixed charges being incurred for each warehouse opened.

Thus Problem III becomes

Minimize % ? ¢, ;% * fy, , )
subject to % x, 2 D j o= 1,2, ... n
My - ? x, > 0 o= 1,2, ... om & Problem VI
x, <1
x,y, 2 0
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Here Dj represents the demands of the jth customer, X the amount
shipped from warehouse i to customer j, M, the ith warehouse capacity,

and y, the fixed charge 0 - 1 variable associated with warehouse i.

As 1n Problem TII, an initial feasible solution can be found by
solving Problem VI as a linear program. A more eflicient method 1s Lo
recognize that 1f y is treated as a continuous variable, then at opti-
mality the constraints My - 2 X, > 0 will be satislied exactly.
Since all coefficients in the objective function are positive, minimi-
zation will be achieved by making the y, as small as possible. Thus
Y, =(1/Mi)§,xlj. Substituting for ¥y, in the other constraints and in

.. .
the objective function leads to

Minimize ZE:{CLJ + (fl/Ml)}xL

[
subject to 2 X, > D} j = 1,2, ... n
-2 x > - M i o= 1,2, m
[ — t
J
x . > 0 ,
lJ -

which 1s a pure transportation problem if [cll + (fL/ML)] > 0, for all
i, j. The shipping costs are weighted by an additional factor (f /M )
which can be thought of as the overhead cost borne per unit shipped 1if
a site were stockpiled to capacity. As a weighting factor, (f /M )
tends to make large warehouses with small fixed costs attractive and
hence acts in the right direction. As previously, if y 1is positive at

optimality, then setting it to 1 yields an initial feasible solution.

FMAX and FMIN values can also be found in this case by solving
transportation problems; the former by setting all y to 1 and the
latter by setting all ¢, to 0 in Problem VI. Finally, given a vector

Yy, with components y ,, Problem VI reduces to

Minimize 22 ¢ x ,
L vy g
subject to 2 X, > DJ j = 1,2, n
i
- X > - M y 1 = 1,2, m
ij - vy ]
j
x > 0

)
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which 1is also a transportation problem. Since y,, has values of either
0 or 1, the second set of constraints expresses the fact that a ware-

house is either open (with capacity M ) or closed (zero capacity).

The arguments in the foregoing two paragraphs indicate that if
the variable costs are of the transportation type, 1t 1s possible Lo
replace the simplex method by elficient transportation-problem algo-

rithms in solving the subproblem.

k. The Fixed-Charge Transportation Problem

This problem, described by Balinski [6], involves a fixed charge

associated with each transportation link that 1s used rather than with

each source opened. LYormally, the problem can be stated as
\
Minimize 2 2
Minimize e e Xy, fi]ylj ,
subject to 2 X,z D, j = 1.2, ... n
-2 X, Z - Sl 1 = 1,2, m
! > Problem VIT
LA R 0 for all @, j,
x >0
r} -
Yo, (0,1) , ,
where DJ is the jth demand, S  the ith supply, and L min (D},SL).

In his paper Balinski notes, as we do, that 1f the fixed-charge vari-
ables y,; are treated as continuous, then in the optimal linear program-

ming solution

L)Yy )

and, hence, the linear problem can be reduced to a problem in X,
Balinski uses the formulation as an approximation to the integer solu-
tion, where any link that carries some goods 1s considered open and
the full fixed charge 1s assessed. He presents computations to show

that this approximation has the desirable property that, as the {ixed

costs of individual links increase, the number of links chosen is reduced.

18
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Problem VIT has the same structure as Problem I and hence an exact
solution can be obtained in the same way. As in Problem VI, the sub-
problem is a transportation network and can be solved by application of
a transportation algorithm. Initial feasible solutions, and values of

FMAX and FMIN, can be obtained in the same way as described previously.

Transportation problems are characterized by a large number of var:-
ables. In the warehouse location problem, the calculations are simpli-
fied because only one 1nteger variable 1s associated with each source.
In the fixed-charge transportation problem, however, an integer variable
is assoclated with each feasible link. For example, the test problems
discussed in Section IV-C involve only five sources and seven destina-
tions, with each source able to send goods to all destinations. Hence
the problem involves 35 integer and 35 continuous variables (and 47 con-
straints). The FMAX and FMIN tests, although they reduce considerably
the allowable number of link combinations, still leave an extremely
large number of vectors ¥, (and hence transportation problems) to be
considered. However, there are a number of additional regularities 1in
the structure of the problem that can be used to reduce this number.

The simplest of these 1s the fact that at least one source must supply
each destination and, hence, at least one 1inkrmust be incident to

each destination. If it should happen that no single source can supply
the entire demand of a particular destination, then a minimum number of
links incident to this destination can be determined and this fact can
be used computationally. By symmetry between source and destination,
similar constraints apply to the destination. Balinski proves that
there exists an optimal integer solution which 1s also a basic solution.
Since the maximum number of open links in any basic solution 1s

m+ n -1 (m = number of sources, n = number of destinations), all

combinations with more than this number of open links can be discarded.

In summary, although the fixed-charge transportation problem 1in-
volves a large number of 0 - 1 variables, the number of Yy, vectors that
need to be considered can be reduced by taking into account the struc-

ture of the problem.
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{11 COMPUTATIONAL METHODS

A, General Approach

The decomposition algorithm presented in Section Il 1nvolves two
i }

major procedures:

(1Y Finding an cligible vector y, and

(2) Solving a linecar program in X given Y .

In this section, methods for finding the vectors ¥y, 1o an efficient

manner and for solving the resulting linear programs in X are presented.

An eligible vector y, may be thought of as a 0-1 string, that is,
a sequence of 0’s and 1’'s corresponding to the values! of the components
y,. 1f nis the number of integer variables, there are of course, 27
such 0-1 strings and it rapidly becomes infeasible to examine ecach of
them. At this point, we take recourse to the structure of the problem.
As was pointed out in Scetion I1, for fixed-charge problems with posi-
tive cost coefficients, simplex solutions of linear programs can be uscd
to find both the continuous optimum and an initial feasible solution in
integers. Turthermore, it is possible to find an upper and o lower
bound (FMAX. FMIN) on the fixed cost ¢y, These bounds scerve to reduce
the number of 0-1 strings that necd to be examined. For example. for
the typical nine-integer variahle problem discussed 1n Section [V-A.
imposition of these bhounds reduced the number of allowable 0-1 strings
from 512 to 85. Thus. for small problems (say. ten to twelve integer
variables) it may be possible to ecnumerate all 0-1 strings between the

FMAX and FMIN limits. particularly if the FUAX bound is tightened as

better solutions are found.

Mere enumeration. however. ignores a large part ol the information
available from the structure of the problem. Integer-programming
algorithms which successively bound the values of integer variables
given the values of the previous variables are particularly attractive

for making use of the problem structure. These algorithms. generically

1
Physically, O represents a closed warchouse and 1 an open warehouse
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known as branch-and-bound algorithms,! were developed for ali-integer
programming problems. One such algorithm, the bound-and-scan algo-
rithm, developed by F. S. Hillier [11], was adapted for the present

work.

The basic 1dea, then, is to use the Hillier algorithm to generate
0-1 strings which, 1t turns out, satisfy the constraints that are bind-
ing (constraints satisfied with equality) i{ the problem is solved as
a linear program and which, furthermore, yield values of the fixed
cost that fall within the FMAX and FMIN bounds. Since upper bounds
are known for the components of the X vector, a simple algebraic test
for feasibility of the sub-problem (Problem II of Section II) can be
performed 1f all elements of the A matrix are non-negative. This test,
which 1s necessary (but not sufficient in all cases) involves setting
those components of X that correspond to y, = 0 to zero and settingall.
the other components of X to.their upper bounds. If any of the con-
straints are not satisfied, the 0-1 string does not lead to a feasible
solution. If the algebraic test is passed, a linear program is solved
which involves only the components of X that correspond to y, = 1.
This linear program leads either to an infeasible solution or to an
optimal solution of the subproblem in X. This optimal solution, 1f it
exists, 1s then substituted back i1nto the objective function of the
original problem together with ¥, to determine whether an improved so-

lution has been found and whether tighter bounds can be imposed on

FMAX.

Because the Hillier bound-and-scan algorithm was an essential part
of the computations performed, Part B sketches this algorithm and
Part C describes the modifications made to adapt 1t for use in fixed-
charge problems. A general description and f{low diagram of the fixed
charge algorithm is presented in Part D, Theremaining parts (Parts E-G)
present variations on the basic computational method to deal with spe-

cial problems.

B. The Hillier Bound-and-Scan Algorithm

This part describes the Hillier bound-and-scan algorithm for the

pure integer linear programming problem as presented by Hillier [11].

See, e.g., [12] and [13] for a survey of these algorithms. /
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This algorithm was originally developed for problems with general 1in-
teger variables in which the range of the variables could be quite

large. Hillier assumed that the objective function 1s to be maximized.

Hillier began by finding an approximate feasible integer solution.

X = X,, and adding the constraint that the objective function € Xmust
equal or exceed the value € X, for this suboptimal solution. He then
made the following key observation: the set of solutions (integer or

non-integer) that satisfy both this objective function constraint and
the constraints that are binding on the optimal non-integer (i.e.,
linear program or IP!) solution must contain the optimal integer solu-
tion. Furthermore, the extreme points of this set form an n-simplex

This 1s 1llustrated in Figure 3.

LPopTiMUM

N

/"

APPROXIMATE
INTEGER SOLUTION

TA- 5205-32

FIG. 3 EXAMPLE OF N-SIMPLEX FORMED
BY BINDING CONSTRAINTS

Here line segments 1, 2, and3 represent constraints, of which 1 and 2
are binding but 31s not if the problem is solved as a linear program. The
objective function € X is drawn through an approximate integer solution.
The triangle defined by ABC is a simplex in 2-space. Since any 1mprove-
ment in the integer solution permits moving the line C X closer to the
point C (the LP optimum), any such improved solution lies within the

triangle.

For convenience, the abbreviation LP will be used for linear progranm.
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The extreme points of the simpiex plus the positivity constraints

provide two pieces of information:

(1)

(2)

Here the solid rectangle drawn through the extreme points of the

simplex of Figure 3 and the first quadrant x,-axis indicates that

Any point inside the n-simplex can be written as a
convex combination of the n + 1 extreme points; t.e.

s

Zop,o= b, p 20 for i o= 1

Upper bounds (i.e., bounds less than one) can then be
determined on some of the values of s, by using other
information about the original problem.

The coordinates of the extreme points (plus the co-

ordinate axes) determine the minimum and maximum values

of each of the variables x, and hence their range. An
example is shown in Figure 4.

X2
-
ot~
ALY
\\\
\c e
\, -
N\ -~
N So
N, /]
\\ /
\\ /
/
b AV
]
x|
o} a
Ta-5205-33

FIG. 4 BOUNDS ON THE ALLOWABLE
RANGE OF VARIABLES

0 < x; S aand b < x, < c.
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The next step in the algorithm is to separate the variables into

four groups:

X X X X X X X X x X X X X X % X X
{ v C N

Group |1 Group 2 Group 3 Group 1
Non-Basic Variables Basic Variables in Increasing Range

Group | consists of the variables that are non-basic in the LP solution;
Group 2 contains the two basic variables with the smallest range of
values within the n-simplex; and the remaining variables arc split into
Groups 3 and 4, with the variables ordered in increasing range. For
convenience of presentation, the components of X will be assumed to he

in the order in which they appear after sorting into groups,

It can be shown that the set of non-basic variables must satisfy

the relation,

> x,/(max x ) 7| 7 (1)
J £ ‘x nun-hasi4}
"y
where max X is the largest value of X, within the n-simplex. Computa-

tional experience has shown that for non-basic variables, max X, 18
generally = | or 2. These small ranges on X, combined with constraint
(1), result in making the number of non-basic combinations that need to

be examined approximately linear with the number of non-basic variahbles

The allowable combinations of values of the non-basic variables
are examined successively.! Each combination forms a hyperplane. The

intersection of this hyperplane with the n-simplex determines tight con-

ditional bounds on all the remaining variables. This is 1llustrated for

a very simple case in two dimensions in Figure 5, where x, is basic and

2

x; is non-basic. Fixing x, at | reduces the range of x, to d 7 x, 7 e

If the bounds on the basic variables are such that the range of one or
more of them does not contain an integer value, this partial solution
need not be examined further. That is, the partial solution 1s

ineligible,

Given an eligible partial solution. the algorithm turns to the
Group 2 variables. Hillier projects the intersection of the partial

solution hyperplane and the n-simplex onto the plane determined by the

1, . .
Any such specification of values to only certain of the variables will be referred tu as a
“partial solution.’
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Ta -5205-34

FIG. 5 EXAMPLE OF CONDITIONAL
BOUNDS ON VARIABLES

two Group 2 variables. Any feasible integer values of these two vari-

ables must lie inside the convex hull of the projected extreme points

(Fig. 6). A simple trigonometric procedure can be used to find all
values of the Group 2 variables inside the convex hull.  If there arve
none, a new partial solution is found for Group |. Otherwise, the al-

gorithm proceeds on to the Group 3 variables with the Group | and 2

variables fixed temporarily.

CONVEX HULL

INTEGER POINTS
® IN GROUP 2

Ta-5205-35

FIG. 6 CONVEX HULL
OF PROJECTED EXTREME
POINTS
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To make the Group 3 and 4 procedures work, an initialization pro-
cedure 1s performed at the time the variables are grouped. Specifi-

cally, for each Group 3 variable use the simplex.method to find

o . 0 .0 . o0
x, = max { x}' SR SO x}j_]}
and
.
_ : i 0 0 R 0
X, min A Ajixl,xz, L x}_l}

subject to the original problem constraints and the constraint

cx > cx,. That 1s, fix the fivst (j - 1) varrables at their values in
the initial feasihble solution, X,, and then solve the LP problems of
maximizing x  and minimizing x . For convenience and for later use,
let b, be the vector obtained by subtracting these fixed values from

b (the right-hand side of the constraint set)

The simplex method is used to obtain these maxima and minima and

the optimal values of corresponding dual variables (yjl, c. yjm) and
* % * % . . .
(y]l, ., yjm). Given the values of the Group 1 and 2 variables and

the previous Group 3 variables, bounds on each Group 3 variable can be

determined by using the fact that
max C X
is a concave function of b (see, e.g., Karlin [14, p. 239]). This fact

implies the following bounds as the maximum and minimum values of

Group 3 variables, given the previous variables:

y:Abl ,

WA s
—

max x, < ox ot

min x 7 x - 2y bb
J 1

where Ob, is the difference between the right-hand side of the con-
straint set for the initial integer solution (b,) and the right-hand
side for the current partial solution being examined. The linear pro-
gramming bounds established in this way for the Group 3 variables are

compared with the extreme point bounds, and whichever is tighter 1s
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used. Note that the bounds for each Group 3 variable depend on the
values assigned to each of the previous Group 3 variables  The Group 3
variables are systematically examined within their bounds until no more
eligible partial solutions can be found for them. at which point the

process returns to the Group 2 procedure.

The 1nitialization procedure for the Group 4 variables is similar
to that for the Group 3 variables. except that rather than fixing all
previous variables. only the variables up through the end of Group 3 are
fixed. The extreme point bounds and the LP bounds are compared and
whichever is tighter is nsed. Since the Group 4 variables have a wider
inttial range than either Group 2 or Group 3. a scanning procedure is
used to speed the search for eligible trial completions (i.¢. comple-
tions that satisfy all constraints of the original problem plus the con-
straint that €X - X,. the current integer solution). 101 an cligihle
completion 1s found which increases the value of the objective function.
then the corresponding complete solution is recorded and the extreme
point bounds are tightened. (Geometrically. ©X 1s moved closer to the
LP optimum in Fig. 3.) The last such solution to he recorded before

exhausting eligible partial solutions must be an optimal integer solntion.

A simple block diagram of the Hillier algorithm ts shown in Figure 7.

C. Modifications of the Hillier Algorithm for the Fixed-Charge Problem

The fixed-charge problem is a mixed-integer programming problem
whose integer variables are restricted to either O or 1. Thus. changes
had to be made in the Hillier algorithm to adapt 1t to the fixed-charge
problem.

The basic change was to use only the Groups 1, 2 and 3 portions of
the algorithm to generate an eligible 0-1 string. To do this, variables
were arranged so that:

{1) Group | consists of non-basic integer variables.

(2) Group 2 consists of 2 basic integer variables plus
any variables with 0 range.

(3) Group 3 consists of the rest of the basic integer

variables.

All non-integer variables (basic and non-basic) can be considered as

Group 4 variables to be handled in a special way. o using the algorithn.
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the allowable ranges of both the integer and the non-integer vari-
ables were considered in applying the extreme point and the linear
programming bounds.  In this way. the effect of constraints involying
the non-integer variables as well as the integer varirable constraints
could be taken into account to reduce the number of 0-1 strings to be

examined.

A second modification of the algoarithm was to include upper bounds
explicitly in determining the maximum allowable werghts on the extreme
points A procedure was added which i1s analogous to that already in the
atgorithm for including the non-negativity requirement on each of the

variables.

A number of minor computational changes were made, such as adding
a more efficient linear program solver for initialization in Group 3, to

increase computational efficiency of the algorithm.

The important point about the use of the llillier algorithm 1s that

it provides a convenient way of reducing the number of cligible 0-1
strings to examine. The algorithm was chosen for several reasons, in-
cluding the desire to test this algorithm for a different class of
problems and its availabilitv in a compatible computer code. As will
be discussed in more detail in Section IV, the algorithm as modified
proved extremely suitable for the present purpose. Whether other im-
nlicit enumeration integer-programming algorithms might be superior

for generating 0-1 strings remains an open question.

D Description of the Fundamental Fixed-Charge Algorithm

This part presents a description of the fundamental fixed-charge
algorithm. For expositional purposes, the desctiption is in terms of
the steps required to solve Problem 111, which is repeated here for

convenilence:

Minimize fy+ cx B
subject to Ax - b
My- x 0
Problem 111
y
x,y = 0
Yy integer y
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In this problem, a fixed-charge variable 1s associated with each con-
tinuous variable. Only minor modifications are needed if more general
relations exist between the fixed charge and continuous variables. FEx-

amples of these modifications are presented in Parts E and F.

Figure 8 is a summary flow diagram of the algorithm. FEach step of
the algorithm 1s numbered on the flow diagram and this numbering system
will be followed in the description. Both a mathematical statement of
the step and, where applicable, a discussion of the computer technique,

are presented.

Step 1: Solve the Problem as a Linear Program

If the integer constraint 1s removed, Problem Il] reduces to a

linear program. The dimensionality of this program is shown as follows:
my my
n 0 Ax > B
my My X > 0
m y 0 <1

That 1s, the problem contains (n + 2m1) constraints and Zml variables
The dimensionality of the program can be reduced to (n + m,) X m by
recognizing the relation between X and y at optimality. Since all co-
efficients of the objective function are assumed to be positive
(Section II-B), the objective function will be minimized if each com-

ponent of ¥y is as small as possible. Setting

y, = x//nm (2)

achieves this result. If x 1is 0 at optimality then y is 0. If x =0.

then x,/m_ is the smallest value y, can have and still satisfy the con-

straint m,y, - x, 2 0.
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Substituting Eq. (2) into Problem III yields the following:

. )
Minimize 2. Gy + —x, s
i t m1
subject to Ax > b Problem VIII
X <m
x >0 S

The upper bound constraint on X is still needed and is stated explicitly.

Problem VIII was solved using an LP package provided by Burroughs
for the B-5500 computer. This program is limited to relatively small
problems (limit: m Xn < 5000).' The program output provides not only the
value of the objective function but also the value of theindividual vari-
ables and a list of the basic and non-basic variables. These quantities
are required in applying the Hillier algorithm. Once Problem VIII was
solved, the list of basic variables was increased to include those y,
which are strictly positive according to Eq. (2). All other y,6 were

treated as non-basic

Step 2. Find the Minimum Variable Cost

This step involves solving Problem IV, repeated here:

Minimize C X ,
Subject to ax > b Problem 1V
m>x >0

Problem IV has the same constraints as Problem VIII, but since 1t has a
different objective function, the Burroughs LP code was applied again.
The only datum needed was the optimal value of the objective function,
which is equal to the minimum variable cost that can be achieved. The

value of the objective functionof Problem IVwas called € X, in Section II.

1 The choice of this relatively inefficient code (rather than say a specialized algorithm for upper
bounded variables—see, e.g., Dantzig LIO, Chap. 18}) was dictated by availability of the program.
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Step 3: Find Initial lnteger Solution by Rounding Up

Ty

The linear program solution found in Step | can be converted into a
feasible solution for Problem IIl by rounding all non-zero y up to 1.

This rounded solution, called Lo' is guaranteed to be feasible because:

(1) The constraint, AX > b, is satisfied by the LP solution
found in Step 1.

(2) The constraint, My - x >0, is satisfied since, for
each index i, x < m,

by ;Lep Il and y, 1s set equal to
0 only if x, = 0.

(3) The constraint ¥ < 1 is satisfied since the y are
only assigned values of 0 or 1

This feasible solution appears, a priori, to be a desirable approximation
from which to begin search for the optimal integer solution. As shown in
Step 1, the upper bounds and the fixed costs weight the variable costs in

the objective function by
c o+ fl/ml

The ratio f /m, can be thought of as the overhead burden borne by each
unit if & particular warehouse were filled to capacity. Thus, for equal
variable costs ¢ , the linear program will favor those warehouses which
have low fl/ml ratios. For equal fixed and variable costs, the linear

program will favor the warehouse with the largest capacity.

An improvement can be achieved i1n the initial solution if an upper

bound on the total stockpile is known; that 1s, m, -

N

x . In this
t=] '

case, the capacities of individual warehouses which are above m, can-be

reset to m, for purposes of calculation. The improvement comes about

becausc m_ appears in the denominator and, hence. large-capacity ware-

houses tend to be favored by the linear program.

If a better fcasible integer solution (i.e., one with smaller value
of the objective function) is known, it can and should be used. The

initial integer solution was called L, in Section II.
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Step 4. Compute Upper Bound on Fixed Cost, FMAX

The minimum variable cost found in Step 2 and the initial 1nteger
solution found in Step 3 provide an upper bound on the maximum value of

the fixed cost; that 1is,
FMAX = Ly - ¢ X,

Step 5: Find Lower Bound on Fixed Cost, FMIN

A lower bound on the fixed cost can be found by solving Problem 111

as a linear program without the integer constraint and with the variahble

costs set equal to 0. That 1is,
Minimize fy |
subject to Ax > b
Problem IX
My - x > 0
y = b
where | is an n-vector all of whose elements are unity. 1If every ware-

house can supply every customer and i{ each has sufficient capacity to
supply the entire demand, then Problem IX can be solved by inspection,
the value of FMIN being equal to the smallest fixed charge. Otherwise,
the optimal value of the objective function of Problem IX will lead to
a conservative lower bound on the fixed cost, provided that the indi-
vidual m  are adjusted so that none is larger than the total demand
(see Step 3). The bound is conservative because it 1s based on the
smallest fixed charge that could be achieved if the y were continuous.
(Unfortunately it is not valid to round the strictly positive y up to

1 in order to set FMIN in this way).

The solution to Problem IX was used to obtain FMIN 1n the test
problems in Section IV. If a better lower bound on the fixed cost is

known, it can, of course, be used.

Step 6: Apply Hillier Algorithm to Obtain a 0-1 String

As discussed in Parts B and C of this Section, the Hillier integer
programming algorithm was used to obtain 0-1 strings that define the set

of open and closed warehouses. A computer code for this algorithm is
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rroughs R-5500, the computer used for the test prob-
1

lems in Section IV. Call the vector defined by the 0-1 string, y.

Step 7: Any More Strings?

The Hillier algorithm contains a test for determining if there are
any additional 0-1 strings eligible for consideration. If there are no

more, the program exits (Step 14).

Step 8: Necessary Test for Feasibility

Two tests are used to check whether or not necessary conditions for
feasibility are satisfied by the 0-1 strings generated by the Hillier
algorithm. The first test checks if

FMIN < 5 f.y. < FMAX

If this test is failed, the program returns to Step 6 and searches for
the next 0-1 string of y, values. If it is passed, a necessary test for

feasibility of the sub-problem (Problem IV) is performed.

Suppose that all elements a,; of the matrix A in the constraint set

Ax > b are positive. Therefore, for feasibility,

ACMY) > b
must be satisfied. That 1s, set
0 , if y, = 0
x, = , for o= 1, 2, m, ;
m, if y, = 1
then check to see whether
by ai]mlyg > bj ) j = 1,2, ..., n . (3)

1f any constraint in the set defined by Eq. (3) is not satisfied., the
0-1 string leads to ap infeasible solution. The reason i1s that, since

all the x, take on their maximum allowable value given the 0-1 string,
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and since all the a,, are posttive, there is no feasible wav of ‘increas- -

ing any x_so that Eq. (3) is satislied.

The test defined by Eq. (3) can be extended to the case in which

particular x, have only negative coefficients « by setting X, - 0 1r-

'y

respective of the value of v for these variables
The test as outlined is not applicable if anv of the v have both

positive and negative coefficients in the matrix A. In this case, the

test using Eq. (3) is skipped and infeasibilityv. if it oceurs, will be

found during the linear program (Step 9). The algebraic test defined

by Eq. (3) has the advantage of requiring no matrix manipulation, an ad-

vantage that will be lost if Step 9 must be used to find infeasibility.

Step 9: Apply Simplex Method to Subproblem

Once the necessary tests for feasibility have heen passed. the next

step is to solve the following linear program (Problem IV):

Minimize S ¢ . N
subject to A x b
> Problem IV
x My
x>0 . J

This upper-bounded variable problem has a special structure that can be
exploited. Since there are more equations (n + m,) than unknowns (m ),

it is natural to consider solving the dual of this problem:

Maximize bu + Myv
Subject to ATu + | < ¢ Problem X
u,v >0

Since the upper bound constraints, X < My, all have positive coeffi-
cients, the dual problem contains within it an initial feasible solu-

tion: U= 0, v = C. Such an initial feasible solution is invaluable
since it eliminates the need for a Phase I calculation and allows pro-

ceeding directly to Phase II. 1In terms of the primal, it is equivalent
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to starting with all variables at their upper bounds and then succes-
sively reducing X variables until € X is minimized. The dual formulation
also has the advantage of reducing the size of the basis matrix from

)

(n+m) *(n+m) to (ml) * (m,

In performing .the computations, it was found advantageous to write
a speclal-purpose code that solves the dual problem starting with the
v = ¢ solution. The cade is organized so that it first eliminates all
x, for which y, = 0. Thus, the number of variables is equal to the
number of y, that equal 1. This further reduces the number of equations
and the size of the basis in the dual problem. For example, in a 30-
variable problem with 28 constraints, the original problem (Problem 111)
has 60 variables (30 x,, 30 y,) and 88 constraints. A typical dual sub-
problem with five warehouses open has 33 variables but only five con-
straints; the basis matrix is only 5 X 5. With an initial feasible
solution available, such problems are solved in a few 1terations and

in at most a second on the B-5500 computer.

Step 10: Infeasible?

If the linear program leads to the conclusion that the problem 1s

1

infeasible, further consideration of the 0-1 string is dropped and the

algorithm returns to Step 6 to seek a new set of open and closed sites.

Step 11: Compute Total Cost

The value of the objective function, 2 (c,x, + f,y,), is determined

from the results of Step 6 and Step 9 whi ch provide the fixed cost and

the minimal variable cost, respectively. The one exception 1s that 1f,
even though a warehouse (say k) is specified as open (y, = 1), no stock-
pile is assigned there (x, = 0 at optimality of the sub-problem). In

this case, the total cost can be reduced by f, since the fixed change
is not incurred. The computer code was written to take this possibility

1into account.

Step 12: Cost < Best Value Thus Far?

The total cost just computed in Step l1 is compared with the lowest
value of the objective function found previously. 1f the total cost 1s

not improved, the program returns to Step 6 to find a new 0-1 string.

! Actually, since the dual of the sub-problem is solved, the computer determines unboundednesa
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Step 13 Store Solution and Reduce FMAX

On the other hand, if the current solution 1s better than any found
thus f{ar, the new solution is stored and the value of the objective
function recorded as L,, Furthermore, the value of FMAX 1s reduced to
L. - CX,, thereby reducing the number of 0-1 strings to be considered.

The program returns to Step 6 with this tighter bound established.

Step 14 Exit

It no more 0-1 strings can be found, there are no more eligible
solutions to be considered. Since the Hillier algorithm guarantees that
no 0-1 string will be examined more than once, and since there are a
finite number of these strings. the process must terminate 1n a finite
number of steps. Furthermore, the Hillier algorithm guarantees that the
0-1 strings will be examined in such a way that the string corresponding

to the optimal solution will not be missed.

The lowest value of the objective function found during the compu-
tations and the corresponding values of the x and y variables are the

optimal solution to the problem.

E. Non-Linear Variable Costs

It was pointed out in Section I[-C that the fundamental algorithm
could be extended directly to fixed-charge problems with separable con-

cave or convex varlable costs. In the case of convex costs, the bounded

variable method for separable convex programming '10. p. 4841) is directly

applicable and the fundamental fixed-charge algorithm can be applied di1-

rectly once the problem has been set up as indicated in Section T1-C. If

the objective function contains separable concave variable costs, the
fundamental algorithm can be modified to handle them. In the remainder
of this part we present the details of the computational algorithm for

concave costs.
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Formally,

Minimize

subject to

where

Here, x'is the vector (xi,xi,
matrix whose columns are (A4,

and b

H.Mﬁ

the concave case was stated as Problem V as follows

n

J
b3
=1

1A

e
.
| A
i

integer

[ex) + fly]

Problem V

Number of segments in the jth concave function,

Upper bound of segment

function,

0

being repeated n, times,

constraints.

t 1in the jth concave

15 the

A0 A

J

the right-hand side of the original



Problem V is much larger than Problem IIT if each‘of,the variables
has several segments. This can be seen by examining the dimensionality

of the constraint matrix:

-
[
S
™M
3

n
1Y) — J
g n]' m Y x
j=1
n
m+2 2. n
n =1 J
- -l J J
g (n 1) ml‘]yl xl
j=1
n
J
n oyl 0
=1 t #

For example a problem in nine variables with twelve constraints in

A x > brequires a constraint matrix of dimension (21 * 18) if the vari-
able costs are linear. However, if each concave cost function must be
represented by, say, three linear segments, the matrix grows to (66 x54),

which 1s an increase of a factor of 9.4 in the number of elements

The growth in the number of rows and the number of elements in the
non-linear case is offset considerably by the regularity in the struc-
ture of the problem, particularly the requirement that only one segment
of each concave cost function can appear in the solution at a time. This
is assured by the constraints
n

J
b3

1 yi =1 and y, 1integer
13
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Computationally, Problem V requires several modifications in the

algorithm presented [or Problem 11l in the previous section.

diagram of Fig. 8 remains unchanged; however. several of

quire additional carc.  The changes will now be described:

The f

the steps

which no changes are Jisted remain as 1n the previous part.

Step 1 Solve as Linear Progranm

It is no longer possible to eliminate the y variables

linear program by using the fact that, at optimality, y/

!

though the relation 1s vrue, the y must be included explicitly

against having two scgments of the same cost function appear in

timal solution. Problem V as formulated doces not guarantee

steps fo

from th

v om!
)

I()W
re-

r

(¢

Al -

to guard

the

that th

problem will be avoided. In the sample problem vun on the computer

(Section IV-B) . a visual check of the linear program output

showed

()[)*

1S

that

it was not cncountered. If a large number of problems are being solved

on a routine rather than an experimental basis, 1L would

modify the computer code so that only one segment at a time

in the optimal solution.

L)f‘ necessary Lo

A saving can be made, however, in that the constraints,

mflil.y: + r" S0 J I, ... n : L 2,

conld a

ppear

need not be stated explicitly, inasmuch as theyv are always non-binding

if only one segment is selected. To see this, consider

concave function with two segments. The upper and lower

straints are

y, vy, | )

a particular

bound

«con-

(6)

(7))



Suppose that x? is non-zero. Then by Eqs. (4) and (6),

1

x? x?
1 1
< y2 &
=Y =
2 1
ml ml
To minimize the objective function, y? = x%/mf, so that the constraint

Eq. (5) is binding and Eq. (6) is non-binding.

Step 8: Necessary Test for Feasibility

An additional test for feasibility 1s performed. This test ex-
amines the 0-1 string produced by the Hillier algorithm to verify that
at most one segment of each cost function i1s specified by the string.

To make this check, the constraints

M
~<
-
| A

—

for j = 1 ..., n ,

are examined. [f any of these constraints are violated, the program

returns to Step 6 and finds a new 0-1 string.

Step 9. Apply Simplex Method to Sub-problem

The sub-problem is reduced in size by letting the lower bounds be

zero for all x{. Thus, the subproblem 1s written as:
"
n J )
Minimize 22 da

subject to  A'x’ > b

ﬂ.>0 )

where y{ is 0 or 1 as defined by the 0-1 string. This simplification
is obtained by making use of the fact that the variable cost 1s concave
and non-decreasing. For example, in the simple two-segment function
shown in Fig. 9, suppose that Segment 2 is being considered (that is,
open’’ and Segment 1 is “closed’’). Then if the optimal

“"

Segment 2 1is
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FIG.9 TWO-SEGMENT CONCAVE FUNCTION

solution of the sub-problem calls for a value of x < nm it 1s a rela-

]
tively simple matter to substitute the corresponding value of the
function on Segment 1 in evaluating the objective function of the main
program. Note that Segment 2 is always above Segment ! for x - m
(because the objective function is assumed to be concave, non-decreasing)

and hence an 1mprovement is guaranteed in this region.

The advantage of neglecting the lower bound is twofold: (1) the
number of variables in the dual problem to be solved 1s reduced because
there are fewer constraints; and (2) an optimal rather than an infeasible
solution 1s often reached. The second advantage permits finding lower
total cost solutions at an earlier stage of the algorithm, which in turn
permits reducing FMAX and, hence, the number of extreme points to be

examined.

Step 11: Compute Total Cost

In this step, the actual line segment called for by the optimal so-

lution of the sub-problem is used.

F. Fixed-Charge Problem with Transportation Cost

In a distribution network, the cost structure often involves a
fixed charge for opening a facility such as a warehouse. plus transpor-
tation costs to each of the customers served from that warelouse. This

problem differs from Problem IIl in that a single fixed charge can be
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associated with more than one variable, since a facility can serve all
customers. The fixed-charge problem with transportation costs was

stated as Problem VI:

Minimize 22 ¢ x.. + 2 fy 7
@ j' Ly tj i [N}
Subject to >x..>D. j = 1,2, ... n
: vyo—
Mlyl - Z xl}» ZO i - 1, 2’ n Problem \,I
J
¥y, =1 to= 1,02, n
Xy, >0 . J

Unfortunately, even modest transportation problems involve large
numbers of variables. For example, the sample problems treated by
Kuehn and Hamburger (3] involved 24 potential sources and 50 customers,
a total of 1200 continuous variables in addition to the 24 integer vari-
ables. This creates difficulty in applying the Hillier algorithm to

obtain 0-1 strings. These difficulties arise from two sources

(1) Finding the extreme points of the n-simplex involves
solving a linear system of equations; this requires
excesslive computation time when the number of vari-
ables is as large as 1in the Kuehn-Hamburger problems

(1224).

(2) To obtain bounds on the Group 3 variables, 1t is
necessary to solve a linear program consisting of
Problem VI with the initial feasible solution as an
added constraint. Although it was shown in Sec-
tion II-D that Problem VI can be reduced to a trans-
portation problem if the y are treated as continuous
rather than discrete variables, adding the initial
solution removes this advantage. Thus, the simplex
method has to be used to establish bounds, a not-
inconsiderable computational task with 1200 variables.

A further practical difficulty can be encountered. If, as 1is the case
in the Kuehn-Hamburger example, the source locations are also destina-
tions with zero shipping cost (customers located locally) and all

fixed costs are equal, the optimal solution with no fixed costs and the

initial linear program solution with fixed costs both call for all

44



p—

.

[

sites open. lThus, all y, are basic and Group 1 in the Hillicr algorithn
1s an empty set. Since the Hillier algorithm works best when Group |1

contains most of the variables., a major advantage of the algorithm 1s

lost.

It is quite clear that theoretically the decomposition idea of spe-
cifying 0-1 strings followed bv solving transportation sub-problems will
lead to an optimal solution. The nub of the problem 1s to reduce the

concept to a form that can be handled by existing machines.
One approach to a computational solution ts the following:

(1) Solve the problem as a linear program

{2) Obtain an initlal integer solution by approximate
techniques. Several such techniques are 1n the
literature such as the algorithm by kuchn and
Hamburger (see Appendix A for a discussion of the
various algorithms).

(3) Establish FMAX and FMIN values.

(4) Use a stripped-down version of the Hillier algorithn
to generate 0-1 strings (sec below for a discussion)
Alternatively, use other branch-and-bound methods for
this purpose

(5) For each 0-1 string., solve the transportation sub-
problem to minimize variable cost.

(6) Determine total cost. I{ this cost is lower than any
found previously, store the solution and tighten the

FMAX bound

This series of steps differs from the algorithm presented 1n Part D in
several key respects: 1t calls for a completely separate calculation
to establish an initial feasible solution by some approximate algorithm.
FMAX can be established as before. IVMIN. the minimum fixed cost. 1s
determined by minimizing the fixed cost subject to the feasibility con-

dition; namely,

n
Minimize oy,
=1
Subject to n n
SOM oy D
[ ;| !
v 0 or | ! b2, n



This is a small but simple integer program. Since it has only one con-
straint it can be solved easily by Everett’s method of Lagrange multi-

pliers [15], if the answer is not available by inspection.

The stripped-down version of the Hillier algorithm referred to in
Step 4 is the followiﬁg: Since all variables may be basic 1in solving
the linear program, discard Group 1. In fact, treat all integer vari-
ables as Group 3. The Group 3 procedure requires solving a series of
linear programs which minimize and maximize the values of each of the
variables, given the values of the previous variables. These minimum
and maximum values, together with the dual variables, are used in de-
termining bounds on the variables while generating 0-1 strings. In the
Hillier algorithm, the constraint set used to establish these bounds

includes the condition
cx < L, ;

that is, the value of the objective function must be at most equal to the

value of the initial solution. However, adding this constraint elimi-
nates the advantage of solving only a transportation problem. Therefore,
it is proposed not to add this constraint. 1In this case, as 1s shown in

Appendix D, the bounds and the dual variables can be found by solving an

equivalent transportation problem.

G. Algorithm for the Fixed-Charge Transportation Problem

1. Problen

The fixed-charge transportation problem described by Balinski [6]
is a generalization of a Hitchcock transportation problem whereby a
fixed charge, blj also is incurred for each link opened. This problem

3

can be stated in the following terms:

mon 3
Minimize lg& jgd C X ¥ fljylj ,
: < ~ C_
subject to =y iy Jj =1, ... n (1)
Probl VII
Sx, <8 S TR S ) > e
| ij t
Y T % 20 all i, j (3)
x, 20 oy, o= (0,1 J
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Constraint sets (1) and (2) express the usual supply aind dcmand reguire-

Ty
Syul

ments. The quantity m,, in constraint sect (3) is given by

m. = min (S ,D)

Ly 1 J

and represents the maximum amount of goods that can be shipped! from

source it to destination j.

As Balinski showed, an approximate solution to this problem can be
obtained by disregarding the indivisibilities of the Y., and recognizing
that, at linear programming optimality, constraint set (3) will be satis-

fied with equality. That is, at LP optimality,
m iy Y ij X iJ = 0

Solving for y;; and substituting in the objective function yields

L. n f!]
Minimize > 2 ¢ H— )« (8)
i=1 j=1 i m, Y
subject to constraint sets (1) and (2), and X, 0

This problem is an ordinary transportation problem with the cost coef-
ficients adjusted to reflect the fixed charges. Accepting the fixed
charge (i.e., rounding y, up to 1) for any route for which X, 0

yields Balinski’s approximation

This approximate solution also yields a bound on the maximum fixed
charge, FMAX, that can be incurred in the optimum solution. FMAX 1is
calculated in the same way as in the problems considered previously.

That 1s,
FMAX = L, - cx
where L; is value of the objective function for the approximate 1nteger

solution and €X  is the minimum transportation cost if there were no

fixed charges

1

m, ., expresses the fact that if the supply at source 1 is less than the demand at destination j. at
i Y
most S] can be shipped over route ij, whercas if the supply exceeds the demand, at most D} will be

shipped over ij.
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A crude lower bound, FMIN, on the fixed costs can be found by con-
sidering the supply constraints one at a time. Enough routes must be
opened from each source to, at least, permit disposing of the supplies
there. Thus, consider the sources one at a time and {ind the cheapest
set of routes out of that source which can absorb the supply. Formally,

solve the problem

Minimize 2 jL]yl] ,
subject to b3 D]yl] > S (9)
j L
for each source ¢ (i = 1,2, ..., m) and then sum these minima. For
small problems (e.g., eight destinations) these problems can be solved

by exhaustive enumeration (see below).

The algorithm for finding eligible 0-1 strings is structured in
such a way that this problem need not be solved explicitly, since 1t 1s
guaranteed that all 0-1 strings generated will satisfy the source con-
straints of Eq. (9) and hence will equal or exceed this crude bound,

FMIN.

Preliminary tests of the algorithm indicated that the range defined
by FMAX and FMIN was often large and that it included a large number of
feasible extreme points for which transportation problems had to be solved.
To obtain tighter bounds on FMIN, the basis idea for branch-and-bound
techniques was added. Suppose that the allowable combination of open

routes from Source 1 is specified but open routes from other sources are

unspecified. Solving the transportation problem under these conditions
specifies the minimum variable cost given these open routes. Thus,
FMAX = L, - ©ox;

where L, is the value of the objective function for the approximate
integer solution and Cx, is the minimum transportation cost 1f the

allowable open routes from Source 1 are specified. Note that

l.'JX1 = CX0

and, hence, that the new value of FMAX must be smaller than that ob-

tained when the routes from Source | are specified. Therefore. adding
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this bounding calculation can (and {for most route combinations does) re-

duce the number of extreme points that need to be examined.

This bounding technique can be applied iteratively; that is, it can
be applied with the routes from Source 1 specified, or from Sources 1
and 2, or Sources 1, 2, and 3, and so on. [t can also be used selec-
tively; for example, one could specify the open routes from Sources |

and 5. The question of how much bounding to do is explored in Section 1V-C.

2. Generating 0-1 Strings

The key part of the problem 1s to generate a small number of 0-1
strings. Since there are mn routes, there are 2"" potential 0-1 strings.
This number can be reduced at once to (2" - 1)™ by recognizing that each

source must ship to at least one destination.

It is advantageous 1n what follows to assume that m > n. Inasmuch
as the role of source and destination can be interchanged 1n the trans-
portation problem without affecting results, this condition can always
be satisfied. We will now present a method for generating 0-1 strings
designed to reduce the number of combinations considered to a level

manageable on the computer.

The basic 1dea for enumerating combinations of open routes 1s to
treat these combinations as m-digit numbers in a base 2" number system.
For example, for four sources and three destinations, the number 6312
would denote the combinations of open routes shown in the box.

Thus, a systematic way of enumcrating the combina-

) DESTINATION tions of open routes 1s to count in a base 2" sys-
SOURCE 3 2 1 tem starting from 11111 ... 1 and continuing to
1 1 1 0 2n9n . 2" There are, of course. many regulari-
2 0 1 1 ties in the structure of transportation problems
z g g é that allow us to throw out many of these numbers.

We will make use of the following:
(1 = open, 0 = closed)

(1) Since the optimal solution in the fixed-charge case
must lie at a vertex (for proof, see Balinski
(6, Theorem 4])), we need consider only basic solu-
tions. The maximum number of non-zero elements in
a basic solution is m + n - 1 (e.g., Dantzig
[10, p. 301}). Hence, any m-digit number that calls
for more than m + n - 1 open routes can be discarded.
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(2) The total cost cannot exceed FMAX.

(3) Each source must dispose of its entire supply, i.e.
the constraint Eq. (9) must be savisfied.

The procedure consists of three parts: initialization, bounding. and
iteration. The initialization which is performed once, and arranges

the data in a favorable way for the iterations, consists of five steps:

(1) Label the sources in decreasing order of the supplies
available.

(2) For each source, compute the total demand for each com-
bination of open routes |a total of m(2® - 1) values).
I{ the supply exceeds the demands from a combination of
destinations, Eq. (9) i1s not satisfied and, hence, the
combination 1s infeasible. Assign an effectively in-
finite fixed charge, ¥, to such combinations

(3) For the remaining combinations, compute the total fixed
charge associated with opening the combination.

(4) Sequence the combinations in order of increasing fixed
cost and store two tables:

(1) The fixed costs 1n 1ncreasing order;

(11) The combinations that correspond to the ordered
fixed costs

(5) For each row in the fixed cost table prepared 1in
Step 4, find the largest allowable fixed charge in
that vow. Set all larger fixed charges to M. The
largest allowable fixed charge 1s determined by sub-
tracting the sum of the smallest fixed charges 1in the
other rows from FMAX.

The data are now arranged so that the sum of the fixed costs in the
first column corresponds to FMIN defined previously and so that infea-
sible source-destination combinations are not considered. Each element
in the table defined in Step 4(i) above i1s treated as a digit in a base
2" number system. The algorithm involves enumerating the combinations
systematically, calculating the fixed cost associated with the m-digit

numbers.

The bounding procedure involves two steps. The routes for which
bounding is to be performed are specified as input and the procedure 1s
carried out whenever the combination of open routes is changed. Assume
that the bounding is being done for the kth digit in the m-digit number.
Then
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(6) Solve the transportation problem with the routes
specified for the first k digits open and with all
routes for digits k+*l through m open.

(7) Determine the value of FMAX to be used in the sub-
sequent 1terations.

The iterations proceed through the following four steps:

{8) Assume that the source in the last row can ship to
any destination (all routes open), and perform the
necessary test for column feasibility:

If this test 1s failed, increase the next-to-the-
last digit by one and repeat. If it 1s passed,
proceed to increment in the last row until the

FMAX test is failed. Note that by arranging the
supplies in decreasing order, the test 1s iterative
That is, the test can be applied to the last 2, 3,
sources together by assuming they can ship to all

destinations and applying the column feasibility test

(9) Check the site combinations called for by each m-digit
number to make sure that no more than n+m-1 routes
are open. Discard combinations that excecd this

bound.

(10) Check each m-digit number for feasibility. First,
check that at least one route 1s open to each desti-
nation and, second, use the weak and strong feasi-
bility tests (see subsection 4).

(11) If an m-digit number passes the FMAX, n+m-1, and
destination feasibility tests, solve the transpor-
tation problem with only the routes defined by the
m-digit number open. Return to Step 7 to obtain
another m-digit number, or terminate if there are no
more numbers to be examined.

Before describing how the data from the transportation problem are used

and how optimality is established, we present an example of Steps 1-5.

3. Example
Consider a problem with four sources and three destinations. For
this problem, m+n-1 = 6 and the maximum number of allowable 0-1 strings
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is (2% - 1)* = 2401, Assume that the supplies, demands, and fixed
charges are as shown in Table |. [Examining the supplies and demands

in Table [ shows that the following combinations are infeasible:

From Source | to Destination 2, or to 3 or to 2 and 3,
From Source 2 only to Destination 2 or to 3;

From Source 3 only to Destination 3;

From Source 4 only to Destination 3.

Computing the total fixed costs and assigning a value of 1000 to the
infeasible combinations yields Table Il. Note that the number of com-
binations that must be considered further has been reduced to

4(5)(6)(6) = 720 from the original 2401.

Table 1 Table 17T
FIXED-CHARGE TABILE TOTAL FISED COSTS
DEMAND DESTINATION COMBINATION
SOURCE SOURCE
50 15 5 1 2 3 4 5 £ 7
25 14 14 11 ! |4 1000 28 1000 25 1G4y 3G
20 15 8 7 2 15 1000 23 1000 22 15 30
15 12 12 9 3 12 12 24 1000 21 21 33
10 13 11 5 4 13 Ll 21 1000 18 1t 29

Sequencing the total costs in increased order for each source and
setting up a separate table showing the order of destination combina-

tions yields Tables TII and TV.

Tahle T11] Table 1A
SEQUENCED COST TARLE COMBINATION ORDER
SOURCE FIXED COST SOURCE DESTINATION COMBINATION
1 14 25 28 39 1000 1600 1000 1 1 0 3 T 2 1 £
2 15 15 22 23 30 1000 1000 2 1 2} 3 3 B 2 !
3 12 12 21 21 RE 33 1000 3 i 2 5 5 3 N !
4 11 13 16 18 21 29 1000 1 2 | 8] 5 J 7 i
One feasible solution involves opening routes (1,1) (2,1} (3,2)
(4,1) and (4,3) with a fixed cost of 590. For the cost structure used

in the test problem, this solution results in an FMAN value of 65,
Using this value, additional entries can be set to 1000 1in Table 111
The reason i1s that the total fixed cost when these combinations are

used even with the cheapest entry (first column) for all other sources
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exceeds 65. A revision of Table IIT to take this additional information
into account 1s shown in Table V. The total number of combinations has
now been reduced to 200 from the original 2401 and the previous 720. Of
the combinations that remain, 189 fail the tests in Steps 8, 9, and 10,

as follows:

No. of Combinations
lFailing Tests

First column feasibility check 30
FMAX test 136
Number of open routes exceeds n + m - 1 2
No route open to some destination 8
Tests for column feasibility 13

The eleven combinations that pass all tests require solution of a trans-
portation problem. The power of the FMAX test 1s 1llustrated here,

since at most 64 of the combinations pass 1t

Table V
SEQUENCED COST TABLE (Revised)

SOURCE FIXED COST
1 14 25 1600 1000 1000 1000 1000
2 15 15 22 23 1000 1000 1000
3 12 12 21 21 24 1000 1000
4 11 13 10 18 24 1000 1000

4. Feasibility Tests

To reduce the number of transportation problems that have to be
solved, a series of feasibility tests are performed (Step 10 above).
The simplest of these is to check the open routes to make sure that
at least one route is open to each destination. [If this is the case,
the weak feasibility test can be applied. 1In this test, each source
is assumed capable of shipping its entire supply to all customers
to which routes are open. An example is shown in Part a. of Table VI
where the numbers indicate the open routes and the maximum shipment.
The test consists of summing the available supplies at each destination
and checking whether this sum is greater than or equal to the total de-
mand. If it is not, the test is failed and that ecxtreme point need not

be considered further.
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Table VI
EXAMPLE OF STRONG FEASIBILITY TEST
DEMANDS DEMANDS DEMANDS
SUPPLIES SUPPLIES SUPPLTES
45 15 20 15 g 35 15 10 0 35 0 0
35 35 : 0 0 0 0
30 30 20 0 20 0
25 25 20 25 25 15 10 10 0
15 15 15 15 15 10 5 5 0
5 5 0 0 0 0
5 5 0 0 0 0
a. b. .
Numbers in matrix indicate Remove stock from rows that Remove stock from columns
open routes and maximum sup- serve only one customer, which serve only one
plies that can be shipped customer,

over them. Weak feasibility
test is passed.

Conclusion: 1nfeasible.

If the weak feasibility test is passed (as 1t is in Part a. of

Table VI) the strong feasibility test is applied. This test, illustrated

in Parts b. and ¢. of Table VI, consists of the following steps:

(1) For each destination supplied by a single source,
reduce the supply at that source by the demand and
eliminate that demand from further consideration.

(2) For each source supplying only one demand, decrease
the demand by the source supply or to zero, whichever
1s larger.

(3) Work back and forth between Steps (1) and (2} until
no further improvements are possible. At each step,
perform the weak feasibility test

5. Transportation Problem
The 0-1 strings generated define a set of open routes. There is no
guarantee of feasibility. Furthermore, even if feasible., there 1s no

guarantee that applying a transportation problem algorithm starting from
this set of open routes will produce this set of routes as the minimum-
cost solution. Since the transportation structure is desirable computa-
tionally, it can be retained if the unit shipping cost 1s set large. say
M, over each closed route. Applying a transportation problem algorithm

will then lead to one of two results:
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(1) an optimal value of the objective function larger than M,
which implies that the originally selected set of open
routes does not lead to a feasible solution; or

(2) an optimal value less than M.

I{f any of the open routes are not used, then their fixed cost can be

subtracted from the total fixed cost.

If the solution obtained has a total cost (fixed plus variable)
which 1s better than any found previously, then the FMAX bound can be
tightened

6. Summary of Algorithm

(1) Solve the transportation problem with no fixed costs

(2) Solve the transportation problems with unit costs of
(¢.. + bij/mij).

ij
(3) Compute FMAX given a partial solution.
(4) Generate a 0-1 string that satisfies FMAX, FMIN, row

feasibility, and column feasibility tests, and has at
most m+tn-1 open routes.

(5) Solve the transportation problem with the unit costs
for closed routes set equal to M. If the total cost
is better than any found thus far, store the result
and go to Step 3. Otherwise, go to Step 4.

The algorithm terminates when no new 0-1 string can be found. The optimal

solution is the lowest total cost solution found during the computations
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[V COMPUTATIONAL EXPERIENCE

A. Fundamental Fixed-Charge Algorithm

Four warehouse location problems were investigated using the funda-
mental fixed-charge algorithm (Section III-D). These problems had the

characteristics listed in Table VII.

The entire constraint set and the ob- Table VII

jective function for Problem | is CHARACTERISTICS OF TEST PROBLEMS FOR
shown in Flg 10. Figul‘e 11 shows FUNDAMENTAL FIXED-CHARGE ALGORTTHM
the Amatrix and the b, ¢, and f pronLey | NUMBER OF [ MINIMUM | NUMBER OF
vectors for Problems 2, 3, and 4. NUMBE R POgE?E;AL STESF}EQIILE EQHA;}\%\{?XIN
Note that for convenience, the cost | 9 189 Lo

of each 1tem of stockpile was taken 0 15 325 18

as 1 and the fixed cost of each site 5 19 919 ag

was expressed as a multiple of the s 30 952 98

unit stockpile cost. The fixed costs

ranged between 45 and 60

Calculations were pertformed for the nine-warehouse problem for
upper bounds of 190, 10© and 69 on the stockpile aL any one site. Two
types of 1initial feasible solutions were assumed: one was obtained by
rounding e linear programming solutlon of the problem, the other by

ling! the 1 ] t ot bl tl ther b
assuming all sites open and full (i{.¢., containing stockpile equal to

the upper bound).

Because the work reported here was experimental in nature, it
proved convenient to break the computations into three parts and to
use the results of one part as input to the next. This division into
parts also allowed experiments to be performed, such as the use of
diftferent initial solutions, and permitted modification of the codes

without requiring continual recomputation.

The first part consisted of solving three linear programs: one
including the fixed and variable costs, one with the fixed costs set

to zero, and one with the variable cost set to zero. This part provided

lThat is, if yl> 0, set Y, = 1.
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FIG. 10 CONSTRAINT SET AND OBJECTIVE FUNCTION FOR THE 9-SITE PROBLEM
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the optimal value of the problem treated as a lincar program, a fist
of basic and non-basic variables required for the Hillier algorithm,
a rounded initial solution 1f desired, values of FMAX and IFMIN, and

bounds on the fixed costs,

The second part consisted of initializing the {lillier Algorithm
by computing the values of the dual variables required for Group 3.
For each basic integer variable it is necessary to solve Lwo linecar
programs, one maximizing and the other minimizing the value of the
variable given the values of the preceding Group !, Group 2 and
Group 3 variables. These lincar programs are solved only once and
their results could be put conveniently on punched cards and used as
inputs for the algorithm proper. As mentioned sceveral times previously,
the linear program package for the Burronghs B-5000 is general and hence
not very efficient. As a result, solving these programs is a rclatively
lengthy process and it proved economical to do it “off-line’” rather than
on-line. As it was, the program for solving these linear programs was
improved somewhat from the program originally used by Hillicr., The main
penalty paid for separating this part of the program was that certain
set-up operations (such as finding extreme points of the n-simplex, and
Group | and Group 2 initializations) were repeated. Because the amount
of duplication involved in set-up was relatively small, no attempt was
made to improve efficiency by saving some of the intcrmediate results

that were calculated in both parts.

The final part consisted of the algorithm proper. Two methods were
used 1n the algorithm to generate 0-1 strings. The first of these was
the Hillier algorithm as described in Section Il11-B. The second was an
enumeration subroutine. This subroutine was introduced when it became
clear that 1f the problem being considered had very few basic variables,
a disproportionate amount of time was being spent torun Part 2 to compute
dual variables for the Hillier algorithm compared to the total time re-
quired to solve the problem. 1t was thought possible that, instead of
using the Group 3 procedure, it might be more economical to enumerate
the completions between FMIN and FMAX given the values of the Group |
and Group 2 variables. Although this approach would result in gener-
ating more 0-1 strings than with the Hillter algorithm, the extra time
taken in examining them was expected to be small in comparison to the

time spent on Part 2.
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A second variation examined consisted of setting up the nine-
warehouse problem without stating the ¥ < 1 constraint explicitly 1in
Parts 1 and 2. This approach hasthe advantage that it eliminates one
constraint per site, thereby reducing the size of the problem that has
to be solved. The upper bound of 1 still is used as an input to the
portion of the Hillier algorithm which generates 0-] strings. The dis-
advantage is that eliminating this set of constraints can (and did)
lead to linear program solutions having some y variables greater than
one. The experience obtained indicates that if the upper-bound con-
straints on warehouse capacity are loose compared to requirements, no
difficulty is encountered. fHowever, it the warehouse capacities are
small, the linear program will tend to use small warehouses with attrac-
tive fixed charges beyond y = 1. Thus, to use this approach it is
necessary to check the results of the initial linear program solutions
to make sure that the ¥y < 1 constraint is satisfied. Tf it i1s not, the

larger problem must be solved.

Table VIII lists the cases examined and the solutions obtained.
The number of sites and the total cost associated with the LP rounded
solution are also shown, as 1s the percent Improvement provided by the

optimal solution.'

The timings achieved are listed in Table IX. The times are elapsed
processor times on the Burroughs B-5500, a medium-speed multiprocessing
machine. The multiprocessing feature caunses the time required for a
program to vary somewhat from run to run. 1In the nine-site problem
various 1nitial solutions were tried: the LP rounded solution referred
to earlier; a feasible three-site solution which was non-optimal; and
a solution in which all nine sites were initially open. The last case
had two variations: all sites filled to capacity initially, and all
sites with an initial stockpile of 95, The table also shows the number
of basic variables for each problem. The major time required was in
computing the dual variables for initializing Group 3. The larger the
problem and the larger the number of basic variables, the longer the

time that was required for this part.

Table IX also lists the cases in which the enumeration subroutine
was used. In these cases, the total computation time after setup was

essentially the same as when the Hillier Group 3 procedure was used. Thus,

for these small number of variables, the enumeration routine is advantageous.

1 . .
* Computed conservatively hy taking 100 X (Initial-Optimal)/Optimal solution.
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Table VIII
SUMMARY OF PROBLEMS SOLVED USING FUNDAMENTAL ALGORITHM
UPPER STOCKPILE APPROXIMATE
NUMBER OF | rorar | Bounp on | aLrocation | TOTAL| roraL SOLUTION | IMPROVE-
POTENTIAL | hevanD | WAREHOUSE FIXED| ‘cosT
WAREHOUSES ; . COST : MENT
SITE Site Amount Number of C
Number Open Sites ost
189 190 2 185 | 102 | 291 3 349 | 16.6%
4
109 3 109 | 102 | 201 3 342 | 14.9%
8 80
69 1 69 | 155 | 344 4 395 | 13.6%
3 69
8 51
15 325 109 1 109 | 218 | 533 4 533 0%
3 29
9 94
14 93
59
19 212 150 4 53 | 257 | 411 7 575 | 18.1%
8 53
13 32
17 46
18 30
30 252 45-252 4 52 173 425 5 467 9.1%

1

Based on LP rounded approximate solution,

Table IX
SUMMARY OF TIMINGS ON B-5500 COMPUTER FOR THE FUNDAMENTAL ALGORITHM
NUMBER OF TIME (secondd
UPPER INITIAL Extreme .
PROBLEM BASIC y LP : Dual Variable | Computation
BOUNDS SOLUTION VARIABLELS Solution Boﬁxonldnitng Computation After Setup Total
9-site 190 ] LP rounded 6 33 33 143 8 206
109 LP rounded 6 32 24 120 7 183
69 | LP rounded 6 31 23 149 4 200
190 3 site, non- 6 31 19 162 11 223
optimal
109! |3 site, non- 3 4 17 16 13 40
optimal
109! { a1l 95 3 4 21 16 9 50
1091 [ all full 3 4 21 16 9 50
1091 { all full 3 4 20 enumeration? 8 32
15-s1te 109 | LP rounded 4 37 52 201 80 370
19-site | 150! | LP rounded 7 89 106 361 14 590
30-site i2521 LP rounded 5 106 290 698 32 1317
£2521 LP rounded 5 106 281 enumeration? 24 411

1

Y, <1 constraints not explicitly stated.

Enumeration subroutine rather than dual variables used.
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It would be anticipated that a cross-over would occur and that the
Hillier algorithm would be pretferred if the number of basic variables
increased and hence the number of combinations that had to be examined
increased. In the cases considered here there were at most 2% combi-
nations in Group 3 to be examined tor each partial completion specitied

by Groups 1 and 2.

Considerable time was saved if the y < | constraints did not have
to be stated explicitly when solving the inttial lincar program. These
cases are noted in Table IX. The linear program in Part | was run with-
out these constraints and the answer obtained had y < 1 for all i. This
answer is fortuitous; it 1s not guaranteed. Cases with y values larger
than 1 should be expected (and have heen observed)! ftor all problems with
small values for the upper bounds M on the x , since the constraint
My, ~x,20 is not sufficient by itself to guarantee that x < M . The
time savings result both from a reduction i1n the number of constraints,
which makes the problem smaller throughout the algorithm, and from a
reduction in the number of y variables which are basic in the LP solu-
tion, which reduces the initial dual vartable computation., [If the

y, £ 1 constraints are stated explicitly, some of the y became basic

at 0 level when solving the 1nitial linear program. This did not occur
when these constraints were removed. [In applving the Hillier algorithm,
y, could take on only values of 0 or 1. Thus, the y < | constraint is

implicit in the algorithm and need not be stated.

Examination of the output data indicates that a major portion of
the work 1in reducing the number of combinations that had to be examined
was done by the Group | procedures, which examine the non-basic variables
in the LP solution. Tt was also found that starting with a seemingly
bad solution (all sites open and full which results in the maximum pos-
sible cost for a teasible solution) did not affect computation time.
This was due 1n part to the test for zero stockpile incorporated in the
program. As described in Section II[-D, the Hillier algorithm specifies
a set of open sites which are used to detine the subproblem. Being a
linear program, the subproblem provides a basic solution for stockpile
allocations. This solution can involve the allocation of zero stockpiles
to one or more open sites. Such zero stockpiles were encountered, usually

in the first several subproblems solved. In these cases the sites with

1 The nine-site problem with upper bounds of 69 (see Table IX) showed this effect.
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zero stockpile need not be opened and hence there is no [ixed ch

o]
[¢]

rg
for them. By noting when these cases occurred, both the FMAX and the
best current solution (L) bounds could be tightened to the same level

as when starting with near-optimal solutions.

B. Non-Linear Variable Cost

The nine-warehouse problem used to explore the general algorithm
was expanded to provide a test case when the objective function is non-
linear. Eight of the sites were assumed to have two-segment cost func-
tions of the form shown in the following diagram, where M is the upper

bound on stockpile.

cost

1 1

N/2 M STOCKPILE

One site (Site 8) was assumed to have a three-segment cost function of

the form shown below.

cosT

N B 1
M3 2N/3 M STOCKPILE

The constraint matrix and the objective function for this problem are
shown in Figure 12. [t can be seen that there are now 38 variables

and 38 constraints instead of 18 variables and 28 constraints.

The computing times were

LP solution 144 seconds
Extreme point bounding 79
Dual variable computation 604
Computation after set-up 30

Total 857

The large time required for dual variable computation resultedbecause
ten of the components of the y vector were basic variables. No partic-

ular difficulty was encountered in coding or in solving this example.
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C. The Tixed-Charge Transportation Problem

The algorithm for the fixed-charge transportation problem described

in Section III-G was coded and run for problems having transportation

matrices of dimension 3 X 4, 4 X 6, 5 %X 7, and 6 X 8. A total of nine
problems were run.? The demands, supplies, unit transportation costs,
and fixed charges for these problems are shown 1n Figure 13. The vari-

able costs for all except Problems 3 and 8 were generated by using sub-
sets of the data presented by Balinski [6] for his test problem. The
variable costs for Problems 3 and 8 are based on Murty's sample prob-
lem [7]. The fixed charges for most of these sample problems were also
based on Balinski’s and Murty’s data. Balinski’s fixed charges were
obtained by using random numbers between 10 and 20. In Problem 6, the
fixed charges were obtained by using random numbers between 0 and 99
and in Problem 7 the fixed charges were increased to the order of 100
and 200 to obtain a problem in which the fixed costs are large compared

to the variable costs.

Since the algorithm requires the solution of a series of trans-
pertation problems, a relatively efficient transportation code was used
as a subroutine.? 1In the 5 X 7 problems, for example, an average of

0.6 second was required to solve each transportation problem.

To specify open and closed routes, the cost matrix was adjusted
so that closed routes had unit shipping costs equal to the total cost
of the initial approximate solution. In this way, capacity constraints
did not have to be introduced into the transportation problem algorithm
and an optimal solution was always obtained. If the set of routes
specified as open were actually infeasible, the infeasibility would be
reflected in the optimal transportation problem solution containing a

closed route and having a large associated cost.

Table X is a summary of the solutions obtained. Three values of
total cost are shown:
(1) The approximate solution obtained by solving the prob-

lem with no fixed costs and accepting the fixed charges

for those routes opened (labeled XPORT);

Two variations on Problem 1 and a variation of Problem 9 were aliso run. The first two differed only
in that 20 and 50 were .dded to each fixed charge. These variations are labeled Problems la and 1b.
The variation of Problem 9 (labeled 9a) involved adding 250 to each fixed charge.

2 This code is PROCEDURE XPORT programmed in ALGOL by M. Chambreau in 1965 for Stanford Research
Institute’'s B-5500 computer. It is based on a paper by Glicksman et al., in Naval Research Logistics
Quarterly in 1960 [16}.
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(2) The aoploximate solution obtained by using
+ f /M. ) as transportation cost

(lééeled éal1nsk1)

(3) The exact solution obtained from the algorithm,
Three values are shown: total cost, transportation
cost and fixed cost.

In addition, the initial and final values ol I'MAX and minimum trans-

portation cost are shown.

Table X
FIXED- CHARGE TRANSPORTATION PROBLEM SOLUTIONS
PROBLEM | prygNsions . SOFUTIONS ‘ .FM v VARTABLE

* XPORT Balinski Exact Initial Final COST
1 3 x 4 335 335 329 (270/60)# 72 67 263
2 4 x 6 220 229 202 (103/99) 121 103 99
3 4% 6 1999 1999 1999 (1947/52) 52 52 1947
4 4 x 8 302 291 273 (165/108) 141 123 150
5 5 x 7 282 267 245 (128/117) 148 126 119
6 5% 7 549 369 317 (173/144) 250 198 119
7 5 %7 2060 | 2189 1638 (166/1472) | 1910 1488 150
8 5x 7 2297 2289 2289 (2230/59) 75 75 2214
9 6 x 8 353 349 314 (120/194) 171 136 178
1 3 x4t 455 429 429 (270/160) 167 167 263
1b 3 x 4% 635 570 570 (270/310) 317 270 263
9 6 x 88 | 3353 3357 2357 (2119/230) | 3175 2179 178

»*
Numbers correspond to numbers in Figure 13.

t Identical to Problem 1 with 20 added to each fixed charge.
Identical to Problem 1 with 50 added to each fixed charge.

2 Jdentical to Problem 9 with 250 edded to each fixed charge.

* (270/60) denotes a variable cost of 270 and a fixed cost of 60.

The results shown in Table X have several interesting features.
In three cases (Problems 2, 7, and 9a) accepting the fixed charges
associated with the transportation solution (XPORT approximation)
was better (lower total cost) then using the Balinski approximation
method. On the other hand, the Balinski method yields an optimal
solution for problems la, 1b, 3 and 8. Although this result rein-

forces Balinski’s claim that his approximation method improves as the
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fixed charges become a larger fraction of the total cost, Problem 9a

does not support this conclusion.

For the problems listed the methods ot approximation give answers
which range from exact to as much as 15 percent high in total cost and
20 percent high in fixed cost. There appears to be no way of judging
a priori the extent to which the approximate solution ditfers {rom the

exact solution.

A word 1s in order about Murty’'s solution to his test problem.
His sample calculation contains a numerical error in that he computes
the total fixed charge 1n his optimal answer at 46 rather than the cor-
rect value of 59. This error leads him to consider all vertices with
variable cost 2260 when he should use 2247 based on his ultra-
conservative lower bound of 16 on the fixed charge. However, merely
insisting on row-teasibility leads to a fixed-charge bound of 30, which
1s sufficient to ensure that his solution will be optimal tor this

problem.

Before presenting the computer time results for these problems it
1s 1nstructive to analyze the number of combinations being dealt with.
The number of combinations of open and closed routes possible 16 277
since each route can be either open or closed. However, since each
destination must receive goods, we must have at least n routes open
{assuming n > m). Furthermore, as pointed out several times previously,
we need consider only basic solutions and the maximum number of open
routes in a basic solution is n + m - 1. Hence, an upper bound on the
number of combinations to be considered 1s

n+ m= ] nom

2.

1= n L

Typical values for this sum are shown in Table XT. Table NI also shows
the number of combinations that passed all tests and required solution

of transportation problems for Test Problems 1, 2, and 5.

It is seen from Table XI that for a 5 % 7 problem, the algorithm
presented reduced the number of vertices to be examined by solving a
transportation problem from the order of 10® to the order of 107, which
is a manageable number. However, the number of vertices goes up very

rapidly with problem size. For an 8 X 12 problem we are dealing with
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Table XI

UPPER BOUND ON NUMBER OF BASIC SOLUTIONS
OF THE FIXED-CHARGE TRANSPORTATION PROBLEM

MATRIX SIZE

3 x 4 4 x 6 5% 7 7 % 9 8 x 12
nn 12 24 35 63 9%
n 4 6 7 9 12
n+m-1 6 9 11 15 19
2nn 4096 | 1.67(107) | 3.43(10'%) | 9.2(10'8) | 8(1028)
ntml fn n
En ( i ) 2211 | 2.45(105) | 6.2(108) 1.7(10'Y | 8(101%)
No. of transpor-
solved [iypical) ‘ * o

the order of 10 vertices. Although it can be expected that many of

of these would be eliminated by the algorithm, the number of trans-
portation problems to be solved still goes up quite rapidly. Further-
more, the search time to find the vertices to be examined also rises
rapidly. A test run using Balinski's 8 x 12 test problem, for example,
required 2 minutes to find the first vertex that passed all tests prior

to solving a transportation problem.

The increase in computing times with problem size may be seen from
the results listed in Table XII. The times are broken into four parts
(SETUP, GENERATE, XPORT, OUTPUT) which correspond to (1) the time re-
quired to obtain the initial approximate solutions and FMAX and to sort
the fixed charges, (2) the time to find a 0-1 string which passes all
tests, (3) the time to solve the required transportation problems for
both 0-1 strings and branch-and-bound, and (4) the time required for

setting up output and printing it out.

The amount of time required 1s governed principally by the time
spent 1n GENERATE, that is, the time required to find extreme points
which pass all tests. The time in XPORT of course increases with the
number of transportation problems to be solved. However, the increase

does not appear to be as rapid as the increase in GENERATE.

Murty’s 5 x 7 problem (Problem 8) was one in which the fixed cost

1s very much smaller than the varrable cost. This problem required
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Table XII

COMPUTER TIMES FOR FIXED-CHARGE TRANSPORTATION PROBLEM

NUMBER OF TRANS-
1 PORTATION PROBLEMS
PROBLEM SIZE | SETUP | GENERATE XPORT OUTPUT TOTAL
. For 0-1 For Branch-
Strings and-Bound
1 3 x 4 6.7 0.3 0.4 0.3 7.7 2 1
2 4 x 6 9.8 16.1 1.8 1.9 32.6 23 22
3 4 x 6 11.0 10.1 3.3 2.0 26.3 12 It
4 4 x 8 12.4 97.2 11.8 20.0 171.4 101 10
5 5x7 12.9 211.8 27. 4 11.7 263.8 191 14
6 5x 7 12.2 103.5 22.8 8.4 146.9 9 7
7 5x 1 12.4 74.0 8.8 2.8 7.0 12 13
8 S x 7 12.6 2937.1 209.5 103.6 3262.8 1437 97
9 6 x 8 17.4 114043 7.0 28.2 151001 131 1
la 3 x 4 6.6 0.3 0.1 0.3 7.0 2 !
1b 3 x 4 6.8 0.4 0.1 0.2 7.8 2 1
9a 6 x 8 17.2 69.3 1.5 0.6 T4 5 1
! Numbering is in accordance with Figure 13.
almost 55 minutes to complete. The Balinski approximation method yields

the optimal solution for this and was {found prior to the iterations.
Thus, the iterations were verifving optimality. To do so, all feasible
{

vertices within the range of fixed charges between 31 and 75 had to bhe

examined even though the optimal answer had a fixed charge of 59,

A separate test run was made for Murty’s problem with FMAX arbi-

trarily set to 50 initially. No improvement in the value of the objec-
tive function was, of course, found. A total time of 102 seconds was
required for this run with [73 transportation problems solved. This

faster approach bounded the aptimal solution as being between 2264 and
2289 and so guaranteed that theapproximate answer obtained from

Balinski’s procedure 1s correct within 1.2 percent.

The approach of speculating on a value of FMAX to speed computa-
tions and to obtain either a solution or a bound on the solution was
also used for the 6 x 8 problem. Tn this case, a test run indicated
that nearly 10 minutes were required to explore all combinations in-

volving the first combination for Sources 1 and 2. Therefore, a
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3 mal
vimal

relatively low value of FMAX was inserted as inpui aad the ©

o

solution found in 25 minutes. As a further check on this phenomenon,
the fixed costs were made dominant relative to the variable costs for
the 6 X 8 problem by increasing each fixed cost by 250. Again, a low
value of FMAX was assumed and a solution was reached in little over a

minute.

A word is also in order about the use of the branch-and-bound
feature. Experiments performed principally with the 4 x 6 problems in-
dicated it to be most advantageous to use this feature only on the first
two sites, That 1s, whenever a new combination in Site 1 or 2 was con-
sidered, the minimum variable cost given that combination of open routes
was computed and FMAX determined. Using one site only did not seem to
reduce running time appreciably. On the other hand, using the first
two sites did introduce considerable time saving (a factor of two in

some cases),

There is no point to increasing beyond two the number of sites for
which branch-and-bound 1is performed because of the rapidly diminishing
returns. If the average number of combinations to be considered for
each site is n, then if branch-and-bound calculations are performed for
Sites 1 and 2, a total of n? transportation problems have to be solved;

with k sites a total of n*

transportation problems have to be examined.
This exponential relation makes 1t 1inadvisable to carry branch-and-

bound beyond two levels.

Examination of the test runs indicated that large numbers of branch-
and-bound transportation problems were being solved near the end of the
search with few new vertices found. These cases, involving higher fixed
costs at Sites 1 and 2, also involved site combinations that contained
previously examined combinations as subsets. It was therefore found
desirable to make the program adaptive and to use search rather than
branch-and-bound near the end of the process. That is, the following

heuristic procedure was adopted for deciding when to use branch-and-

bound:

(1) Compute the fixed cost associated with Site 1 plus
Site 2 plus the lowest cost (first column in Table V)
for all other sites.

13




(2) 1If this cost (which is the minimum cost given the
combination of routes open from Sites 1 and 2) 1s
more than a fixed percentage of FMAX, do not solve
the transportation problem but do search for a
better solution with the current value of FMAX.

In the results reportéd here, branch-and-bound calculations were dis-
continued when the cost computed in Step | was greater than 90 percent
of FMAX. This value, chosen arbitrarily, proved to be a good one in
that when tested on the 4 x 6 problems 1t reduced the number of trans-

portation problems and the total time.

Based on the results obtained thus far, it is clear that the algo-
rithm provides a computationally feasible way of obtaining exact solutions
to fixed-charge transportation problems of small size {(say, 6 x8or less).
The algorithm appears best suited for these cases in which the fixed
charge is dominant and in which there 1s a wide range of values of the
fixed charges. Further work is required to reduce computing times to
a point where they are suitable for larger problems. Some approaches

to achieving these improvements are described in Section VI.
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V. DUALITY

A. Previous Work

Until Balas [17] presented his theory for duality in discrete
programming in mid-1967, duality theory for mixed-integer programming
had not been well developed. Only two previous papers on this subject
were found in the literature, one by Gomory and Baumol in 1960 [18]
and the other by Alcaly and Klevorick in 1966 [19],

Both of the previous papers are concerned with interpreting dual
prices implied by the linear program solved at optimality in the Gomory
cut method [e.g,, Ref. 9, Ch. 26]. The interpretation of the dual
prices is based on the dual variable in the final augmented linear

program which is solved, i.e., the one from which the integer solu-

tion 1s obtained. The results presented are deemed unsatisfactory by
the authors of both papers because they are not unique. An alternative
view of the cause of the difficulty is mathematical. The usual linear-
programming interpretation of dual variables revolves around arguments
about the nature of the solution at the extreme point of the constraint
set. Since the linear problem 1s continuous, it is possible to talk
about partial derivatives and hence rates of change of individual var-
iables. Continuity does not exist for the integer variables, making 1t

unreasonable to expect that derivatives obtained by adding artificial

constraints will have meaning.

Balas, by addressing himself to finding a generalized dual of
integer programs directly, was able to develop a duality theory which
has the following desirable properties:

(1) The dual of the dual is the primal.
(2) Complementary slackness conditions hold.

(3) If an optimal solution to the primal exists,
then both a solution of the dual and a
global saddle point exist.
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In this Section, Balas’ results are applied to the fixed-charge

problem to find the dual and explore its significance.

B. Definition of the Dual of the Fixed-Charge Problem

The primal of the upper-bounded fixed-charge problem (Problem T11)

may be written as:!

Maximize ~fy -cx ,

subject to -hx < =b

“My + Ix < 0

y = 0,1

X > 0
There are n primal variables, n, of which are integers and n - n,
(= n,) are continuous. The number of constraints is m.

According to Balas’ theory, the dual is then written as:

-b
Max Min u° -vly
y u 0
T
0 -A ~f
subject to u? o
- | -c
uy > 0
y = 0,1
v. unconstrained if j ¢ N,

v; 20 if j e N - N,

An alternative formulation would involve adding the constraint ¥ < 1 and specifying y, inmteger. The
same conclusions are reached in either case.

16



Here U and V are the dual vectors having m and n components, respectively.

The v 1s decomposed into

where V! has N, components corresponding to the Yy components. For mixed-
. . 2 . .
integer programs U is equal to U since 1t turns out that u! has no com-

ponents. Note that the same ¥ vector appears in both the primal and

the dual.

For simplicity in what follows, U? will be decomposed into u, and
U, vectors corresponding to the two sets of equations in the primal

problem. Thus, we write the dual as

-b
Mex  Min (u,u,) )-vly ,

LR SRS 0
0 -A vi\ 7 -f\ T
subject to (u,u,) - =
- | v, ~C
u,, U, y, v:E o200
y = 0,1

Multiplying out results in:

Max  Min  {- u,b - v'y}

yoooupt
subject to “u M- vt o= - (1
~u b s U, - vE o= e (2)
Uy, u,, y, v¥ > 0

y, = 0,1

Thus the dual is a max-min problem that involves maximizing over the

same fixed-charge vector y that appears in the primal. Tt will be
convenient in what follows to substitute for v' from (1) to obtain:
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Max Min  (-u;b + u,My - fy) ,
y lll.u2

subject to -ulA + Uyl - vi o= ¢ (3)

u u

y, v > 0

1 2!

Note that a typical equation in (3) has the form
-u

+ -— = — .
A Ugy vy ¢y ;

that is, the ith equation contains only the ith components of A&, Uy,
and C. Here Ai is the vector defined by the ith column of the A

matrix.

C. TInterpretation of the Dual

By Balas’ saddle-point theorem, the value of the primal and dual
objective function will be equal at optimality. Thus, 1f the optimal
solution of the primal is known, the value of the optimal soluttion of
the dual is also known. Furthermore, since Y appears in both the pri-
mal and the dual and since it must have the same value at optimality,
if the optimal ¥y is known from the solution of the primal problem, the
values of U, and U, at optimality in the dual problem can be determined

by solving a linear program.

Using superscript bars to denote value at optimality, we have
-fy - ecx = -u;b + u,My - fy

Since fy appears on both sides, we have, furthermore, that the variable
cost -C X is equal to -u,b + u2My. This relation is also obtained
from substituting into one of Balas’ three complementary slackness

conditions.

Insight into the meaning and value of u, and U, can be obtained

by applying Balas’ other two complementary slackness conditions:

u¥z? - o (1)

vix, = 0 (5)
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where 22 is the slack vector in the primal and is glven by

Dual Vector

2. b ) 0 -A y u,
0 M I X u,
T A PR L :
Substituting u = —, ) in Eq. (4) and multiplying yields
u
U (b-AXx) =0 (6)
U My - Ix =0 (7)

If the optimal solution of the primal 1is known, complementary

slackness conditions (5) and (7) can be used to determine the values
2

of the individual components of U, and v?, thatis, u,, and Zl. The values
depend on the value of x, at optimality. Applying Egs. (5) and (7) to
the objective function and to Condition (3) at optimality results in

the following tabulation:

CONTRIBUTION OF
— - - = CONDITION (3) —LUR
e Y. G b } u, My TO OBJECTIVE
i L T AT OPTIMALITY FUNCTION
0 0 20 20| “uA *+ou, - W2 o= -c 0
174 24 i i
0 < x. < . 1 0 0 _IIA' = -c 0
1 1 1 13
my 120 0 TupAp a7 Ug,m;

The important result 1s that a component of Ez contributes to the
value of the objective function only if the corresponding site is filled
to capacity (x, = m,) and that in this case a positive term appears.
Since the max-min problem calls for minimization over u,, u,,m, can be
thought of as a penalty cost which results from having Site i filled
to capacity. That 1is, 1f E2lmi > 0, then it would be economically
advantageous to put additional supplies at Site i were it not for the
capacity constraint. If several sites are used to capacity, the values
of u,,m, can be used to determine at which site 1t 1s most advantageous
to increase capacity. By comparing the values of Ell with 521 it 1s
possible to determine whether a greater marginal return can be obtained

from increasing the stockpile at a site not used to capacity or from
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expanding capacity. If a site is open but only partially filled

(0 < x; < n) then the shadow cost for additional capacity (uy,) 1is
zero since excess capacity is available. If a site is closed (x, = 0)
the value of u, is a measure of the marginal return which could be

obtained if the fixed charge did not have to be incurred.

Another economic interpretation in terms of subsidies and penalties'

can be obtained by applying Balas’ Theorem 6[17, p. 24]. He shows that
if (y,x) is an optimal solution of the primal, then it is also an opti-

mal solution of the following linear program:

Maximi ze (-f + s)y - ¢cx :
subject to -Ax < ~-b
-My+ Ix < 0
y < 1
x,y > 1 ,
where
v! if y, o= 1
Si =
min [0, 3] ify, = 0
and, from Eq. (3)
v,o= f, = u'm,

Balas’ results show that

(a) If ;l = 0 and ;1 = 0 then s, < 0
(b) If y = 1 and 0 < x, <m,, then s, = f, ;
(c) If ;l = 1 and x, = m,, then 0 < s < f,

1 E. Balas, private communication (October 1967).
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In other words:

(a) There may be a penalty (sj < 0) associated with
not opening some sites.

(b) Open sites not used to capacity must bear a
subsidy equal to the fixed charge.

(¢) Even if an open site is operated at full capacity
it may have to bear a subsidy, but this subsidy
will not exceed the fixed charge.

These penalties and subsidies are the direct result of the integrality
requirement on y. Since (f + s) <0 and y, > 0, the term (- + s)y
in the objective function indicates the additional cost resulting from

the inability of the y to take on fractional values.

Condition (6} is the usual complementary slackness condition of

linear programming. Thus, the components of u, can be interpreted as

conventional shadow prices.

D. Conclusions

In this section we have briefly examined duality theory for the
linear fixed-charge problem. Balas’ theory has been applied to for-
mulate the dual and to explore the implications of complementary slack-
ness conditions. The dual problem is a mixed-integer program like the
primal; but it does not have the primal’s simple structure. Thus, no
advantage seems to be gained by attempting to solve the dual rather
than the primal. Conversely, if the dual of the fixed-charge problem
is encountered, it is advantageous to formulate the primal and solve it

by the methods of this dissertation.
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VI CONCLUSIONS AND DIRECTIONS FOR FURTHER WORK

The following conclusions are based on the algorithms presented
and the computational tests which have been performed.  The experience
gained has inevitably led to ideas for improving the algorithms, both
in terms of approach and computational strategy. These improvements

are discussed under ‘‘Directions for Further Work," (Part B).

A. Conclusions

This dissertation has presented and explored the concept of decom-
posing fixed-charge problems into a pure-integer master program and a
series of linear subprograms. The objectives sought and achieved were
algorithms for obtaining exact solutions to ftixed-charge problems in
which the continuous variables have upper bounds. The algorithms
developed are primal algorithms 1n that they provide continually i1m-

proving feasible solutions in their search for the optimum.

Four computational algorithms were presented:

(1) The fundamental (ixed-charge algorithm suitable for
linear constraints and non-negative linear costs
for the continuous variables. A fixed charge may be
assoclated with each activity engaged in at non-zero
level.

{(2) A modification of the fundamental algorithm for non-
linear variable cost functions.

(3) An algorithm for solving the fixed-charge problem 1in
which the costs are transportation costs and fixed
charges are assocltated with each source opened.

(4) An algorithm for solving the tixed-charge trans-
portation problem in which a fixed charge 1is
associated with each route opened.

Computational experience is reported for Algorithms (1), (2), and (4).

lLimited computational experience has been obtained for the funda-
mental fixed-charge algorithm for problems having up to 30 variables.
The test problems were motivated by the site-selection problem 1n which

a number of sites are avallable at which activities can be located and
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it is desired to select the lowest-cost subset that meets minimum per-
formance requirements. Although satisfactory results were obtained for
a 30-site problem, computation times for this 30-site problem were
sufficiently large to indicate that larger problems (e.g., 50 or more

sites) would be expensive to run with the algorithm as developed.

The Hillier algorithm as modified proved to be quite suitable for
the decomposition approach. By bounding the region to be explored and
making extensive use of the structure of the problem, this algorithm
results in requiring very few linear programs to be solved as sub-
problems. However, the Hillier algorithm proves to be one of the major
limitations on problem size that can be handled at present because it
requires two time-consuming computations 1n setting up: (1) solution
of a 'set of simultaneous linear equations for establishing weights on
the extreme points?! and (2) solutions of a large number of linear pro-
grams for establishing the bounds in Group 3. If the number of vari-
ables in Group 3 is small, then enumerating the extreme points between

FMAX and FMIN provides a way of overcoming the second limitation.

Examination of the detailed printout showed that, for the three
algorithms tested computationally, improved solutions and the optimal
solution are obtained early in the iterations and that the major portion
of the time is spent in search verifying optimality. For the nine-site
test problems, the quality of the initial feasible solution did not ap-
pear to have an appreciable effect on computing time for the fundamental
algorithm. However, preliminary experiments with the fixed-charge algo-
rithm with transportation costs (Algorithm 3) indicated that good starting

solutions would be of considerable help there.

The algorithm for the fixed-charge transportation problem
(Algorithm 4) provided satisfactory results for problems of size up to
6 X 8. Here the quality of the initial solution and the bounds seem
particularly important since the algorithm searches exhaustively between
FMIN and FMAX bounds. The algorithm seems to be particularly suitable
when the fixed costs are large compared to the variable costs, whereas
the Murty algorithm seems to be more suitable for large variable and

small fixed costs.

1 The computer code for the Hillier alg riThm solves a set of simultaneous equations for each extreme
point. As pointed out by Hillier in 11l this is not necessary. Also, the Hillier code uses an ex-
isting but very inefficient LP program for obtaining duals. Major improvements in the running time
for the Hillier algorithm are certainly possible and appear easy to obtain. Thus, it is to be antic-
ipated that efficient coding will increase the number of variables that can be dealt with economically.
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The FMAX and FMIN bounds are powerful tools tor reducing the size
of the lattice to be searched. However, they still require exploration
of a large number of extremc points. For example, in a typical case,

7

the value of FMAX associated with the optimal solution mav be T35 whereas

s

the optimal solution has a total fixed cost of 60. Nonctheless, even

number

s

if the optimal solution is Tound on the first tteration. a lar
of feasible extreme points with fixed charges between 90 and 75 must
still be checked to make sure that there is no solution whose fixed

cost 1s greater than 60 but whose total cost 1s lower overall,

The total computational experience indicates that the approach of
decomposing of mixed-integer programs into a pure-integer mastef pro-
gram and linear subprograms provides a truittul approach to solving

site-selection and similar fixed-charge problems.

B. Directions for Further Work

There are various improvements in the algorithms that appeuar tomerit
further 1nvestigation. These are discussed here, together with some
alternative approaches, and various calculations are snggested that

will permit more complete assessment of the merits of the algorithms.

The fundamental fixed-charge algorithm makes heavy use of the
Hillier integer-programming algorithm to generate 0-1 strings. Compu-
tational experience indicates that, 1n 1ts present torm, the Hillier
algorithm is suitable for calculations involving ol the order of
30 continuous and 30 integer variables.  The Hillicr algerithm 1s, of
course, not basic to the decomposition approach: 1t= use was dictated
by interest 1n the algorithm and 1ts ready avarlabilitv.,  Other wavs
of generating 0-1 strings, such as branch-and-bonnd techniques, should
be investigated. Improvements 1n the Hillier algovithm as thev become

available will also increase the size of problem that can be handled

economically.

As was pointed out in the conclusions, enumerating extreme points
within the FMAX and FMIN limits for the Group 3 varviables provides con-
siderable time savings in the Hlillier algorithm it the number of busic
variables is swall. The time 15 saved by eliminating the need for
solving two lincar programs foreach Group 3 variable. In return. more
0-1 strings have to be evaluated because the dual variable appiroach

in Group 3 takes 1nto account the constraints on the entire problem
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(including those generaied by ihe continucus variables), whereas the
enumeration procedure looks at only the constraints on the integer
portion of the problem. Thus, the enumeration procedure disregards
much of the information available for generating eligible 0-1 strings.
A tradeoff point may exist where the number of 0-1 strings generated
by the counting prbcedure becomes large enough (because of the number

of Group 3variables) tomake itmore efficient to use Hillier’s Group 3

procedure. Explorations of this question for the fundamental algorithm

should be undertaken.

A separate approach 1s to improve further the methods of calcu-
lating the dual variables required tfor initialization of Group 3 in the
Hillier algorithm. At present, one Phase I and two Phase Il simplex
calculations are performed for each Group 3 variable. Successive prob-
lems being solved differ only slightly in that an additional variable
is held fixed in the constraint set. This suggests that rather than
starting from Phase I each time, the dual simplex method can be used
once the first Group 3 variable calculations have been completed.
Another aspect of the Hillier algorithm which deserves further work
1s i1mproving the efficiency of the computations required to determine

the extreme points of the n-simplex and their weights.

For the fixed-charge problem with transportation costs (Algorithm 3),
only an initial computational scheme has been developed. Many details
still warrant further exploration. For example, 1t may be useful to
impose a series of simple tests before solving the transportation sub-
problem. One such test would determine the minimum transportation cost
associated with a 0-1 string in the absence of supply limitations.
Specifically, the cost of shipping the entire demand over the cheapest
route from an open site would be determined. Such a solution, though
generally not feasible, does provide a lower bound on the variable cost
and can be used to determine whether 1t 1is worthwhile to pursue

this 0-1 string further.

An aspect of Algorithm 4 that deserves further exploration is the
strategy for considering extreme points. As presented in Section [I1-G,
the algorithm searches among all the extreme points between FMAX and
FMIN. In so doing, 1t tollows a zigzag path between these bounds. An
alternative search pattern is to pick an arbitrary FMAX lower than the

initial one. Call i1t FMAX1. It a better solution is found using FMAXI,
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FMAX

FMIN

it is retained and the algorithm proceeds normally. [f no improvement

is tound, the algorithm is restarted and only fixed-charge values between
FMAX1 and FMAX are examined. Such a restart capability would be facil-
itated by storing the locations in the fixed-charge table at which the
FMAX1 bound was reached. The advantage of this scheme 1s that if a
better solution is found, a lower value of FMAX is established and fewer
extreme points need to be examined. Nothing is lost if an improvement

is not found, since all feasible extreme points with fixed charges below
FMAX]1 have to be examined anyway. Furthermore, a better bound has been

obtained on the optimal solution.

From a computational point of view, setting FMAX] too low results
in a low probability of finding a better solution, whereas setting it
too high results in very little computation saving. A reasonable value

for FMAX1 may be the average of FMAX and FMIN.

A complementary approach to the use of a boundary tor reducing FMAX
in the fixed charge transportation problem would be to combine the present
algorithm with the Murty algorithm. Both algorithms use a decomposition
approach; the Murty algorithm searches systematically among the extreme
points of the transportation subproblems and iteratively decreases the
maximum allowable variable cost, whereas Algorithm 4 searches systemat-
ically among the extreme points defined by the fixed charges and iter-

atively decreases the maximum allowable fixed cost.

It will be recalled that
FMAX = L_ - ¢ X

where L is the initial approximate solution and € X, 1s the minimum
variable cost. There are two ways of reducing FMAX: tinding a better
(lower-cost) approximate solution or determining a higher bound on the

variable cost. The latter is exactly what the Murty algorithm does.
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Thus, a combined algorithm would obtain an approximate solution
as at present and determine FMAX. It would then use the Murty algorithm
to increase C X , thereby reducing FMAX. At some point, the Murty algo-
rithm would be discontinued (either because of excessive branching or
excessive number of iterations) 1f an optimal solution has not been
found, and Algorithm 4 would be initiated with the best value of FMAX
found thus far. Such a combined algorithm appears attractive as a
means for increasing the size of the fixed-charge transportation prob-

lem that can be solved economically.
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APPENDIX A

LITERATURE SURVEY

The operations research literature on location problems and fixed-
charge problems was surveyed as an initial step in preparing this dis-
sertation. All back issues of the International Abstracts in Operations
Research were checked out and, where possible, the relevant papers ob-
tained. Various articles appearing as references in the papers consulted
were also examined. In addition, several articles that have appeared

within the last year have been reviewed.

The literature on location problems can be divided into two cate-

gories: (1) papers concerned with the optimal placement of facilities
in two dimensions where there are no fixed costs; and (2) papers concerned
with the fixed-charge problem discussed in this dissertation. 1In this
appendix, eight papers in the second category are summarized. One of

the more recent papers in the first category 1s that of Hillier and

Connors (22}, which also includes a bibliography of previous work.
’ graphy P

Each of the eight papers discussed 1n this appendix presents an
algorithm for solving fixed-charge problems. The first four of these
(Kuehn-Hamburger, Manne, Feldman et al., and Jandy) contain approximate
algorithms for warehouse location. The fifth paper (Efroymson-Ray) pre-
sents an exact algorithm for warehouse location for the case of unlimited
warehouse size. The final three papers (Levy, Cooper and Drebes, and
Dwyer) present approximate algorithms for special cases: the lock box
problem, the linear fixed-charge problem, and the fixed-charge transpor-
tation problem. Two methods for obtaining optimal solutions to fixed-
charge problems with upper bounds (the Benders partitioning algorithm
and the Murty algorithm) are described in Appendices B and C.
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“A Heuristic Program for Locating Warehouses'’
A. A. Kuehn and J. J. Hamburger
Management Science, Vol. 9, No. 4 (July 1963), pp. 643-667.

Kuehn and Hamburger recognize that the basic problem of Jocating

warehouses involves a trade-off (my phrase, not theirs) between the mar-

ginal cost of warehouse operation and the increased profits resulting from

lower transportation costs and more rapid delivery. The paper is quite
thorough, presenting the algorithm, details of a sample problem, a pro-
gramming formulation (but not a solution) and a description of previous
methods including those of Baumol and Wolfe!, Balinski and Mills?, and

Shycon and Maffei?. The last is a simulation approach.

Basic Idea

The program is divided into two parts, a maln program which locates
warehouses one at a time until no additional warehouses can be added
without increasing cost, and a bump-and-shift routine which tries to im-
prove the initial solution by removing and by interchanging warehouses.
Kuehn and Hamburger make use of the following three heuristics 1n set-

ting up their algorithm:

(1) Good locations for regional warehouses will be at or
near concentrations of demand. Therefore, only the

largest demand points need be considered as potential
warehouse locations.

(2) A sub-optimal wareliousing system can be developed by
adding one warehouse at a time. Thus, at each stage
of the algorithm, choose the warehouse that offers
the biggest improvement and terminate when no 1mprove-
ments can be made.

(3) At each stage only a subset of the potential loca-
tions need be considered for detailed evaluation.
Choose as members of this subset those locations
which offer the greatest local improvement.4

.1 W. J. Baumol and P. Wolfe, “Warehouse location,” Operations Research, Vol. 6, No. 2, (March-
April 1958), pp. 232-263.
M. L. Balinski and H. Mills, “A Warehouse Problem, " Mathematica, Princeton, N.J., (April 1960).

H. N. Shycon and R. B. Maffei, “Simulation—Tool for Better Distribution,” Harvard Business Review
(Nov.-Dec. 1960), pp. 65-75.

Local improvement refers to the decrease in transportation cost if a city 1s served by its own
warehouse rather than from another city.
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The bump-and shift-routine 1s designed to check on the solution derived
in two ways: (a) any warehouse which is no longer economic because some
of its customers have been shifted to newly located warehouses is elimi-
nated (bumped) and its customers reassigned, and (b) attempts are made

to interchange each remaining site with others in the territory it serves.

Sample Computation

The results of twelve sample problems based on all the combinations
of three factory locations and four levels of fixed warehouse costs are
presented. Fifty destinations, 24 of which are potential warehouse sites
are considered. At any stage, only five of the potential warehouses,
selected on the basis of maximum local demand, are considered for addi-
tion to the warehouse network. This set of data is guite useful as a
means of comparing alternative methods, and has been used by Feldman et al.,

as a convenient standard by which to judge their algorithm.

Kuehn and Hamburger claim that the time required to obtain a solution
increases as problem size increases at a much slower rate than it does

with the simplex method.

The authors mention briefly the possibility of starting with all

warehouses operative and removing them one at a time. They feel that
this approach would be computaticnally inefficient unless more than half
the potential warehouses are retained. Thus, a typical application would

be the selection of warehouses to be closed.

Mathematical Formulation

Factory Warehouse Customer
goods h
O, -0 —©®

Define the following quantities:

Amount of gcods

Unit transportation cost from factory to warehouse

o o= >

Unit transportation cost from warehouse to customer
D(T) Implicit cost of a delay of T units 1in delivery

F Planned fixed cost of operating a warehouse per
time period

Semi-variable cost of operating a warehouse

Demand
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W Capacity of a warehouse
Capacity of a factory

Z A 0-1 variable that is one only if a warehouse
is open

1,7,k h Subséripts that denote factory, warehouse,
customer, and type of goods, respectively.

The objective 1s to minimize

(4 + B (r

hoi, .k htj h k

ZF 2, 0 T8, (2K )¢ 5D b

)X
hik higk h,J J ik h,k

subject to the following constraints:

(1) All demands must be supplied,

;] Xhl]k = Qhk , for all h,k
(2) Factory capacity limits,
2 Xhl]k < th , for all h,1
J .k
(3) Warehouse capacity,
[j(hz th,k) < WJ , for all j

7.
where I is an arbitrary function describing the inventory level.

Note that this formulation is quite general and takes into account
upper bound limits on warehouses and factories as well as costs of ship-
ping delays. The algorithm as described in the paper does not take the

limits or opportunity costs into account.

Baumol-Wolfe Solution

Kuehn and Hamburger review the Baumol-Wolfe formulation which 1is
based on strictly concave cost functions with a fixed initial cost. They
conclude that the Baumol-Wol fe algorithm, based on the marginal warehouse
cost, does not take fixed costs into account explicitly in generating
solutions and that the degree of concavity has strong influence on the
solution obtained. They then show that an improved (lower-cost) solution
of the Baumol-Wolfe sample problem can be obtained either by using their

algorithm or by perturbing the Baumol-Wolfe algorithm.
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Balinski-Mi1lls Solution

Balinski and Mills present a solution for the single-factory, single-
product case with delivery and storage costs treated as piecewise linear.
They linearize the problem by assuming that the warehousing cost is approx-
imated by the average unit cost of operating the warehouse at some high
level (such as capacity). This leads to an approximate solution which
they show to be a lower bound on the problem. Putting the solution back
into the original integer formulation leads to an upper bound. Unfortu-

nately, these bounds are quite loose.

Shycon-Maffei Simulation

Shycon and Maffei are in the simulation business and they offer to
simulate any proposed warehousing scheme. According to Kuehn and Ham-
burger, the simulation method is not really suited to parameter variation,
although Shycon and Maffei claim that it can be done. 1In a two-page,
heated rebuttal, printed after the Kuehn-Hamburger article, Shycon and
Maffei argue that the real world is not well modeled by Kuehn and Ham-
burger because of the simplistic treatment of transportation costs and
order patterns. The differences 1n customer order patterns reflect dif-
ferences in timing of orders, size of orders, product mixes, and so on.
Transportation costs are affected by the rate structures and by such
phenomena as size of order, geographic area, minimum charges per shipment,

and cartage.

‘““Plant Location Under Economies of Scale—Decentralization

and Computation”

Alan S. Manne

Management Science, Vol. 11, No. 9 (November 1964), pp. 213-235.

Manne evaluates the steepest-ascent, one-point-move algorithm (which

he abbreviates SAOPMA) proposed by Reiter and Sherman!

for discrete opti-
mizing problems. He limits his discussion to the case of a single prod-
duct, a single degree of vertical integration, a single time period,
known demands, and no capacity limitations. Manne concludes that the
technique works well in this highly restricted case, but he warns that

its performance under more realistic assumptions 1s not vouched for.

1 See, for example, S. Reiter and G, R, Sherman, *“Allocating Indivisible Resources Affording External
Economies or Diseconomies,’ International Economic Review, (January 1962),
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Basic Assumptions

Manne makes the following basic assumptions:

(1) There are I possible sources of supply (plants).
(2) There are J distinct market points to be served.
(3) The requirements at the jth market are R,'

(4) Costs are the sum of manufacturing costs plus
shipping costs. Shipping costs are linear 1n
quantity shipped but economies of scale are
possible 1n manufacturing.

Formulation as a Programming Problem

Minimize % ay, * l?}bl]xlj :

subject to % le = RJ j o= 1,2, ...J ,
y, -~ 0 1implies X, 0 for all j )
y, = 1 implies X, > 0 for some j ,
x >0y = 0 or 1 ,

where a 1s the fixed charge for plant ¢ if this plant is built and bLJ
1s the unit manufacturing and shipping cost for the product 1f built at

plant 1 and shipped to market j.

Solution Approach

The formulation of the problem 1s that of a standard transportation
probiem once the y are known. SAOPVMA makes use of this by starting at
an arbitrary lattice point in the unit hypercube defined by the y and
then searching for the next adjacent feasible lattice point which results
in the greatest improvement. Thus, for example, if the vector (0 1 0 0)
represents the i1nitial solution of Plant 2 open and three other plants
closed, SAOPMA searches among the vectors (1 1 0 0), (0 1 1 0), and
(01 01) to find which, if any, comwbination of open plants leads to im-
provement. If none do, the program stops. 1f one or more do, the com-
bination with the biggest improvement is picked. The search 1s repeated,
starting each time with the current vector, until no more Improvements

can be achieved.
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Manne presents a series of results for 6-, 8-, and 10-point-
symmetrical cases which are sufficiently small so that complete enumera- .
tion 1s possible for comparison with SAOPMA results. MHe chose potential
plant locations by picking numbers at random on a unit square. Destina-
tions were assumed to be identical to potential locations. A further
randomization was introduced by multiplying the distance by a random num-
ber between 0.9 and 1.1 to account for variable transportation rates
between centers and using this product as the transportation cost. Three
levels of fixed charge were tested. Market requirements, fixed charges,
and unit manufacturing costs were assumed to be constant throughout.

Fifty maps were constructed for each of the three symmetrical cases. The
results showed that, as was to be expected, the larger the fixed charges
the fewer the plants. Analyses of the results also showed that the SAOPMA
led to tolerable errors in almost all cases. In some 1350 cases tested,

only four errors of more than 10 percent were encountered.

Manne also gives some asymmetrical results where market requirements,
or fixed charges, or unit manufacturing cost varies from plant to plant

and finds that for his 8-point examples he still gets reasonable results.

The computer tests are encouraging, and clever from a design view-

n
peint, but are far removed from real data.

“Warehouse Location Under Continuous Economies of Scale’
E. Feldman, F. A. Lehrer, and T. L. Ray
Management Science, Vol. 12, No. 9 (May 1966), pp. 670-684.

This is one of a pair of papers from Esso Research and Engineering;
the other, by Efroymson and Ray, 1s described later. Whereas Efroymson
and Ray take an integer programming approach (which was originally de-
signed to test the results of this paper), Feldman et al. take a heuris-
tic approach. Rather than characterizing economies of scale by a single

number for “opening’ a warehouse (i.e., a fixed cost), they allow the
economies of scale to affect warehousing costs over the entire range of

warehouse sizes.
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Mathematical Formulation
Minimize 2 b x + 2 (T )
’J ’] ! t
l,]
subject to 2 x L . x -0 for v = 1,2, ... n .
' o v J v
J 1,2, m ,
where
X, 0" flow from warehouse 1 to demand center j,
T =2 X, 0= throughput of warehouse i,
bl} = unit cost of flow from warehouse 1 to
' center J,
D] = demand at center j,
fl(') = warehousing cost function for warelhouse 1,
assumed continuous and concave over LUhe
range of interest.
The concavity property ensures that in the optimal solution, no demand
center will receive flows from more than one warehouse.
Heuristic Approach
The basic concern of this paper is to extend the Kuehn-Hamburger
results to the case 1n which the warehousing cost function 1s concave
rather than of the form a + b T (fixed cost plux linear operating cost)
Feldman et al. point out that the basic difference between the linear and
concave cases i1s in the assignment of customers to warehonses that have
been opened. They also claim as an advantage the ability to deal with
different concave warehousing cost functions for cach potential warehouse.
Another important step forward {rom huehn-Hamburger 1s the use of
both an add aud a drop approach. Instead of starting with the best single

location and merely building up one at a time until a local oplimum set
1s found, Feldman et aql. also start with all “areﬁouses as an 1nltial
solution and drop one at a time until a local optimum is reached. The
drop routine provides alternative solutions that often prove to he better
than those obtained with the add routine. One reason for this 1s feasi-
bility. In an add routine the program [lirst tries to reach a feasible
solution (1.e., all demands satisfied), and this initial rapid drive to

feasibility 1s not necessarily the route to an optimal solution.
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Ts handlc the nou-linear warehousing costs, the authors start by

associating a “local customer set’’ with each warehouse. This gives them
an initial point on the cost curve by defining an initial throughput
volume for each warehouse and they then use the incremental costs from
this point in their iterations. In the case of the drop routine, they

use the actual throughputs in the current solution.

Comparison with Kuehn-Hamburger

The first numerical tests were on the problems solved in the Kuehn-
Hamburger paper. Feldman et al. claim that their algorithm yields solu-
tions that have costs equal to or lower than those of Kuehn-Hamburger,

although no dramatic savings were realized.

Other Numerical Tests

A much larger problem involving four factories, 49 warehouses, and

200 customer locations!

also was run. Demand at each location was assumed
to be proportional to population and transportation costs were assumed

to be linear with distance. Each potential site was allowed to serve

only the fifteen closest customers (a crude representation of the pen-
alty for undue delay in shipment). The concave functions were approxi-

mated by line segments. The tests 1nvolved only cost functions consisting

of two line segments or of a single straight line.

The drop routine was used as a way of obtaining an initial feasible
solution for the add routine. Solutions were obtained for both types of
cost functions by both the drop and add routines. The answers from the
two routines differed considerably in the number of warehouses selected
when the two-line-segment cost function was used. The drop solution
yielded an answer involving 32 warehouses (and was 3 percent cheaper)
whereas the add solution resulted in only 17 warehouses. An optimal
solution found by integer programming resulted in an additional 0.5 per-
cent saving and 34 warehouses. Feldman et al. conclude from their data
that routine use of the programs would not lead to satisfactory results,

so that the user must have 1nsight for selecting starting solutions.

1 . C .
Locations refer to cities in the U.S.
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In the linear cost case, both the add and drop solutions led to nine
warehouses with only one difference in location. The two answers differed
by 0.3 percent, and the add solution was shown to be optimal by the integer
programming toutine. It is interesting Lo note that although the straight-
line cost curves were chosen so as Lo approximate the two-segment cost
curves, they resulted in a far different set of warehouses being selecled

and 1n 10 percent higher cost.

“Approximate Algorithm for the Fixed Charge Capacitated Site
Location Problem™

Géza Jandy

Technical Report 67-3, Operations Research louse, Stanford University,

Stanford California (April 1967).

Jandy presents an approximate algorithm for the linear f{ixed-charge
problem with transportation costs and with upper bounds (Problem VI,
Section II-D) based on imputed unit-investment costs. fle starts out by
assigning an initial value of f /M to eacli investment cost. This initial
value is just the 1ncrease 1n unit variable cost if the fixed-charge prob-

lem 1s solved as a lincar program (see Section [IT-F)

Based on the optimal LP solution, Jandy modifies the imputed invest-
ment costs for plants not used to capacity and solves the problem again
as a linear program. This process 1s continued until no more investment
cost modifications can be made. At this point he checks for pairwise
interchanges (bringing in an unused site to replace one in the current
solution) that would lead to improvement in the objective function. ft-
erations are terminated when no more cost changes or variable 1nterchanges

can be made.

Four small sample problems solved by hand are presented.

“A Branch-Bound Algorithm for Plant lLocation”
M. A. Efrovmson and T. L. Ray
Operations Research, Vol. 14, No. 3 (Mayv-June 1966). pp. 361-308.

This 1s a companion paper to Feldwan et al. discussed earlier. The
original 1ntent was to use mixed-integer programming techniques to verify
the examples of Feldman et al. Actually, Efrovmson and Ray came up with

somewhat more.

98



The basic problem considered is the same as in Feldman, et al. namely,
site selection from among a finite number of alternatives with known
transportation and fixed costs and no restrictions on warehouse size,.

The basic integer programming technique is branch-and-bound (see, for
example, [12] and [13]). Efroymson and Ray point out that branch-and-
bound can be troublesome computationally because of the large number of
linear programs that must be solved. To overcome this, they formulate

the problem carefully and then introduce simplifications that make use

of the structure of the plant location problem.
Formulation
Define the following quantities:

NJ = the set of indices of those plants that can
supply customer j.

P = the set of indices of those customers that
can be supplied from plant 1

n, = number of elements in P,
X, ® the fraction of demand D] supplied from 1
t.. = unit transportation cost from plant 1 to

customer j

c -t x D - total transportation cost from
iJ RE AR
1 to g
f, > 0 = fixed cost associated with plant 1

The problem then becomes:

Minimize z = 2 ¢ «x + 2 flyl

subject to 2 x.. =1 ; j =1, ...n
tEN v
j
0 < 2 x <n.y ; t o= 1, .m
_]Epl Ly = [
y, = 0 or 1 ; T o= 1, m

The three constraints express the conditions that

(1) The demands of all customers are fully satisfied.

(2) A plant supplies 0 customers if it 1s closed
(y, = 0) or at most n_ if it is open.
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(3) A plant (y) is either open (y = 1) or closed (y, = 0).
Efroymson and Ray then assert that 1f, at any stage of branch-and bound,
K, = set of indices of y, fixed at 0,
K, - set of indices of y, fixed at 1,
K, = set of indices of the remaining y ,

then the optimal solution of the linear programming problem is

1 1f c . *tg/n = min le + g, /n, !
J 3 k".KlUKQ kj k k
X . =
0]
0 otherwise
yl = ngl ij/nL (L‘K))
fa (k « K,)
g,
0 (k< K.)

!

This formulation has the advantage that it is quite simple Lo evaluate
nodes on a computer, but has the disadvantage that, since the number
of customers served by a plant is small compared to the potential
number of customers that 1t can serve, the amount of fixed cost ab-
sorbed by a plant at any iteration will be small, hence the program
will run long. Efroymson and Ray then turn to the structure of the

problem to make three simplifications:

(1) Find the smallest net saving that could be made 1f
anew plant 1s opened. If this smallest saving 1s
positive 1t always pays to open this plant, so open
it.

{(2) 1If it is cheapest to ship to a given customer from
a plant that 1s already open, ship to him from
there.

{3) Find the largest net saving that could be made
from opening a new plant. If this maximum 1s
negative, leave this plant shut.

100




- X o M ON G OGN WP AN R N B Gn N S SR e Vo

These three simplifications arediscussed in quantitative terms in the annex
following this discussion. The important points are that these are simple
physical principles and that they cyclic. That ts, the steps are followed
over and over until no improvement is obtained. Then another iteration

of branch-and bound is performed and these checks are run ugain.

Efroymson and Ray then talk about three extensions to more compli-

cated plant cost structures. These are shown by the following plots:
PLANT i
PLANT
COsT
bi(TS)+1; -2
- |
e fi
fi{ fi{ a; (TS) fi{
TOTAL SHIPPED (TS) TOTAL SHIPPED TOTAL SHIPPED
(n (2) (3)
TA-5205-36

FIG. A-1 PLANT COST STRUCTURES

The first case 1s a simple modification of the basic case. where
c is replaced bv ¢ = (1 + * )D where » 1s the unit plant cost
v} M t) L} 1 H 1
for plant 1.

The second case involves no fixed costs but does have concave plant

costs. For simplicity. consider two linear segments. To solve the prob-
lem, consider two plants one small with linear cost a . and the other
large with linear cost b  and fixed cost [ . The problem then reduces
to one with restricted entry: mnamely. if the small plant 1s in the

solution, the large one 1s not, and converselyv: however. the plant can
be closed (neither segment in the solution). The third case is a com-

bination of the first two.

Efrovmson and Ray conclude by discussing computational aspects.
They indicate that theyv solved a 50-plant. 200-customer problem in
10 minutes on an IBM 7064 conputer for cost structures (a) and (b) in

Figure A-1. Theyv also point out that 1f a “good” feasible solution is
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known, the objective tunction value can be used as an initial bound..
Furthermore, they recommend terminating if an all-integer node 1is

found that is within a preset € of all smaller non-integer nodes.

Comments on Etfroymson and Ray

The Efroymson-Ray algorithm is applicable only to the case in which
there are no upper bounds on warehouse size. The central element 1in the
algorithm is the fact that, in the absence of upper bounds, X, Oor l;
that is, a plant supplies either all or none of the requirements ol a
particular customer. This all-or-none relation leads to the three sim-
plifications described and makes it possible to solve the linear programs
by applying a test rather than the simplex method. No way has been found

of adapting the algorithm to the upper-bounded case. !

Annex: Mathematical Formulation of Simplifications by

Efroymson and Ray

1. Finding the minimum net gain from opening a new warchouse.

Let
Alj = minimum [max(ck] - CIJ,O)] for
ke K],UK 2
ieKQ,i;ék,jepl,keNj
where
Al) is the smallest gain that can be obtained in shipping

from ¢ to j.

The conditions on ¢ and j imply that the paths ij and kj must be
feasible and that only those plants are considered which arc openor could
be opened. ALJ 1s greater than 0 only if plant ! is the cheapest source
for customer j.

A plant should be opened it

This condition states that if the sum of the smallest net gains from
opening plant ¢ exceeds the fixed cost of the plant, f,, it should be

opened since a profit is guaranteed.

Private conversation with M, Efroymson, January 1967.
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2. Reducing the Value of n|

The number of customers that can be supplied from plant i isn,.
Since, in solving the successive linear programs in the branch-and-
bound technique, the optimal value of y 1is divided by n , the process

converges slowly. "One way of speeding it up 1s to reduce this divisor.

Cerpainly, it we can find a plant that is already open (k) which
provides cheaper shipping costs than a plant we are considering opening

(1) we will want to ship from the open plant. Mathematically if

min (ij - cij) <0 i€ Ky, J € Pl
heKI

holds, eliminate the ¢, term from further consideration and reduce
n, by 1. Note that if this inequality holds for all customers that

plant ¢ can serve, it eliminates that plant from further consideration

and sets y . = 0.

3. Finding the Maximum Gain from Opening a Plant

Define Al] as 1n Simplification 1, but consider only comparisons
of a new plant with an existing (open) plant (that is, k € kv N}).
1f

ZAl]_fi<0 ’

]EPL

then it is cheaper to use the exlisting warechouses than to open the new
one because, even with the largest savings, the fixed cost cannot be
recovered. If the condition is satisfied, then y 6 is set to 0 and this

plant need not be considered further.

“An Application of Heuristic Problem Solving to Accounts Receivable
Management’’

Ferdinand Levy

Management Science, Vol. 12, No. 6 (February 1966), pp. 245-254.

Levy is concerned with the lock box problem described in

Section I-C.
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Basic Assumptions

l.evy makes the following basic assumptions:

(1) There are J possible lock box locations.

(2y The distribution of checks, both in tern

i, and dollar amount, A , is known. levy suggests
stratiliced sampling (based on geographical distri-
bution and amount) to establish the values of the A’

(3) The following quantities are also known:

is of

source,

the mail time from the tth source Lo the jth

lockbox, sz;

the number of days from lock box to bank

ance, 11 combination 1] is used, B,];

the clearance cost of a check, s by
bank 1n city j;

the fixed charge for a lock hox, FJ;

the 1nterest rate, r.

Algorithm

Step 1. Compute the cost associated with each check 1f

it 1s sent to the jth city:

Y = r(A )M + Bl ) o+ C}

t) t L} ]

Step 2. For each potential city, j, compute
cost i{ all checks are sent there:

L = Y + F
J 1) J

Step 3. Open a lock box permanently 1n that
which LJ is a minimum.

Step 4. Lxamine Y = for each check. If it

the

and

the

city

s cheapest

clear-

total

for

to send the check to the city just selected,

assign that check there permanently and remove

it from further consideration.

(A-1)

Step 5. Compute new values of L for the remaining checks

and potential locations. Tentatively open the

box with the lowest value of L]
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Step 6. Now tentatively allocate all the remaining checks
among the open boxes. 1 the total cost with the
box found in Step 5 is smaller than the total cost
without this additional box, open the new bhox
permanently and go to Step 4. Otherwise, do not
select this box and terminate.

Computational Experience

lLevy cites results for an industrial manulacturer whose sales
3 € . . .
total $10?% who was able to reduce his accounts receivable {loat by

61 percent and to achieve a saving of $180,000 in interest costs,

Comments on Levy’s Paper

Levy’s algorithm is of the class of constructive hill climbing
algorithms that successively select solutions by steepest ascent,
There 1s no guurantee against stopping at a relative maximum., levy
in fact 1s satisfied with a single pass and makes no attempt to see
whether or not interchanges or shilts could result 1n an improvement,
nor does he try to find either an upper or a lower bound. As a devail,
he does not 1nclude a check of the one-lock-hox solution against the
no-lock-box solution. An obvious crude bound on the minimum cost is
available 1n the data levy generates: lor cach check determine the
minimum cost {(over all lock boxes) and assign that cost to the check,
The minimum total cost then is the sum of these minima plus the cost
ot the cheapest lock box {in symbols, find [(Z win Y']) + min F}]}

IR : J
“An Approximate Solution Method for the Fixed Charge Problem”
[.. Cooper and C. Drebes
Naval Research Logistics Quarterly, Vol. 14, No. | (March 1967)
pp. 101-14.

This recent paper presents two heuristic methods for solving the
linear fixed-charge problem with a tixed charge associuted with each
variable. The fundamental 1idea 1s to start with the simplex solution
and then bring adjacent extreme points into the basis one at a time,
where the extreme points are selected on the basis of their fixed
costs. Computational results are presented tor problems having con-
straint matrices, A, up to 15 ¥ 30. Average computing times reported
on the IBM 7072 were 20 seconds for 5 * 10 problems, 1.6 minutes for

7 %X 15, and 15 minutes for the 15 % 30 problems. Comparison with the
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.
exact solution obtained by complete enumeration of extreme points
showed the algorithms to give answers within 5 percent or less for the
two smaller problems and within 10 percent for the largest problems.
“Lse of Completely Reduced Matrices in Solving Transportation
Problems with Fixed Charges’’
P. 5. Dwyer
Nurval Research Logistics Quarterly, Vol. 13, No. 3 (September 1966)
pp. 289-315.

Dwyer applies his method of completely reduced matrices [23] to
the tixed-charge transportation problem. His main concern is with the
case of equal fixed charges where the optimal solution muy be a degen-
erate solution (< m + n - 1 routes open). In this case, il fixed charges

are large compared to variable costs, the most degenerate solution i

g

optimal., Dwyer presents exact and approximate methods for finding this

most degenerate solution. He also discusses approximate solutions for

unequal fixed charges based on his reduced matrix approach.
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APPENDIX B

THE BENDERS PARTITIONING ALGORITHM

The algorithm presented in this thesis makes heavy use of partition-
ing the constraint set into lnteger aud non-integer variables. In this
respect it is similar to the approach used by Benders '81. This Appendix
summarizes the Benders approach and compares it with the present work.
The discussion of the algorithm (and the notation used) follows that

. . . . . . . “an
given by Balinski in his summary article on integer programming 1205,

Consider the mixed integer programming problem:

Minimize yo = G &+ CY ,
Subject to AX + AY » B ,
{(B-1)
X,y >0
Y integer

Let R denote the permissible values of Y. Then Eq. (B-1) may Le written

as
min (C.Y + win [C,X|AX > B - A,y X 01 . (B-2)
2 1 — 2
Y€R X
Given the vector Y, the minimization over X is a linecar program. This

lincar program can be replaced by its dual,

max {U(B - A,Y)|UA - C U > ot
2 5 ° 2

1 i

to obtain

P (S S (B-3)

min {C,Y + max [U(B - A,YV)|[UA, < C
Y €R U - -
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Consider the convev polyhedral set, S - {UlU
independent of Y. If the set is empty, no solution to the original
problem exists (Farkas’ Theorem). Otherwise, the maximum value of
U(B -~ A,Y) attains its optimum at an extreme point of S or grows without
bound along an extreme ray of S. But both the extreme points (vertices)
and extreme rays of S are finite in number and, hence, can be enumerated.

Let

{UI)UI =  extreme point of S}

=~
1

H

I

K {utlvA,

| v

0, U>0}) = set of extreme rays of S

If for some Y there exists a U*, k ¢ K, such that U*(B - A,Y) > 0, then
the maximization in Eq. (B-3) leads to a value of +®, which implies that
there is no solution to the minimization over X. Hence, a necessary and

sufficient condition on Y to admit a feasible X is that
U'(B - A,Y) <0 for all k<K . (B-4)
We can use Eq. (B-4) to rewrite Eq. (B-3) as:

min {y,ly, > C,¥ + max [U'(B - 4,¥) , and UX(B ~ A,Y) <0 all k<K]}
Y €R < el “ -

{B-5)

Thus, the partitioning transforms the mixed-integer program 1nto an all-
integer program in variables Y containing potentially vast numbers of

linear constraints on y, and Y. As in decomposition for lincar program-
ming, the hope is that only a small subset of these constraints need to

be enumerated.

Computationally, one iteration of the Benders algorithm proceeds as

follows:

Step 1. Given a finite subset of U/, J =Q, where Q _ K UL,
solve the all-integer program defined by Eq. (B-5)
over the set of constraints associated with U/, for

jeQ.
Step 2. If no feasible solution exists, then Eq. (B-1) has
no feasible solution either. Terminate
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Step 3.

Step 4.

The algorit

Let yo, Y be the optimal solution obtained (or yo
small, Y* feasible if Yo 1is unbounded below) for
Eq. (B-5). Determine whether or not this solution
is optimal for Eq. (B-1) by solving the linear
program:

m}n'{chLAlx S B - ALY X >0}

- max {U(B - ALY UA, < c U > 0}

1°

Let X* U' be the optimal solutions of the primal
and dual linear programs, respectively, and let
f(Y ) be the value of the objective function.

If f(Y ) = 4% then the current Y does not admit
a feasible X and a new U¥, k <K, has been found
from the dual. If f(Y*) = =% then no feasible
solution exists. Terminate. If f(Y*) 1s finite,
then either the solution is optimal or an addi-
tional element of Q has been found. 1In either
case, (X' ,Y") is a feasible solution of Eq. (B-1)
If in addition,

v 2 C,Y + f(¥) = Y s Y

2 1

then (X, ¥") is optimal. Terminate.

If Eq. (B-6) is not satisfied, then, one or more
of the linear constraints of Eq. (B-5) is not
satisfied by yO,Y . The mo st “violated'' one
corresponds to U". Hence, U is adjoined to the
set Q and the process repeats, starting from
Step 1.

hm has the following properties

[t must terminate 1n a finite number of steps.

At each set an upper and a lower bound on y; is
obtained. (ngever, the upper bound may be 1in-
finite 1f f(Y ) 1s infinite.)

If the set S is bounded. then f(Y*) is always
f1n1te and each 1teration yields a feasible pair

(X", "),

The partitioning preserves the structure of the
matrix A,.  Thus, if a special linear programming
technique (such as the transportation problem.
upper bounded variables, or network flow) is appli-
cable to A it can be used.
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Twao main diffarances beotween the Benders algoullinm and Lvne adecompo-

sition algorithm presented here are:

(1) The Benders algorithm requires the solution of a series
of integer programs whereas the present algorithm
involves only one integer program.

(2) The Benders algorithm, being a general algorithm, does
not make use of the specific structure of the problem,
whereas the present algorithm makes explicit use of
problem structure, particularly the relations of the
integer and continuous variahles

Some computational experience with the Benders algorithm has been

obtained for fixed charge problems by Bruce R. Buzby of Union Carbide
1

on what he calls “non-linear distribution” problems. His problems have
been concerned primarily with adding facilities to existing networks,

and with non-linear objective functions. He concludes, based on 135
randomly generated sample problems, that at present the Benders algorithm
is efficient for situations in which the integer variables result 1in at

most 10% combinations having to be searched.

1 Private communication, March 1967,

IRR!
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APPENDIX C

MURTY'S SOLUTION OF THE FIXED-CHARGE PROBLEM BY
RANKING THE EXTREME POINTS

This appendix summarizes Murty’s method [7] for solving the fixed-
charge problem by ranking the extreme points. Murty defines the sub-

problem as we do, that is,

Minimi ze cX

subject to Ax > b (C-1)
x > 0
He uses the result of Hirsch and Dantzig [2], that the minimum of the
fixed-charge problem will occur at an extreme point of the constraint
set (C-1). His only assumption is that the solution of the subprob-
lem is finite. In this case it 1s possible to rank all the extreme

points of (C-1) in increasing order of ¢ x.

Suppose that such a ranking has been achieved. Then 1t is possible

to bound the maximum value of the variable costs.

Z, = variable cost of the kth ranked extreme point;
Dk = fixed cost of the kth ranked extreme point;
D, = a lower bound on the fixed charge component

(that 1s, D0 fﬁDk for all k);

- 1.
p Dy - Dy

113




This condition states that

The first two quantities on the right are the best solution found thus
far, and the second two are a lower bound on the total cost. Rearrang-

ing terms and cancelling Z, yields:

Z + D

r 0 i z + D

Since Dy is a lower bound on the fixed cost, and since all subsequent
ranked extreme points Zr+ly R Zn are larger, the current best solution

must be optimal.

Murty presents an algorithm for finding the adjacent extreme points
which involves only one-step pivot operations. The algorithm becomes
somewhat complicated in degenerate cases where several basic feasible
solutions represent the same vertex In this case, all these basic

solutions must be explored by branching from the degenerate vertex.

Murty points out that his algorithm works well when the extreme
points of the subproblem are non-degenerate and “the range of values of
Z for feasible X 1s large compared to the fixed charges.” The latter
statement really implies that the values of Z are large compared to the
fixed charges and that there are few extreme points which are close (in
value of the objective function) to the optimal extreme point. The ef-

ficiency of the algorithm also improves with the ncarness of D, to the

greatest lower bound of D,, the fixed charges associated with the vertices.
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APPENDIX D

DETERMINING DUAL VARIABLES IN THE FIXED CHARGE
PROBLEM WITH TRANSPORTATION COSTS

To use the Hillier algorithm for fixed-charge problems with trans-
portation costs (Section III-F), it was proposed to declare all variables
to be Group 3 and to use the Group 3 procedures. The key to this approach
is to be able to solve the series of maximization and minimization prob-
lems required for initialization in Group 3 efficiently. To this end,
the initial solution 1s not added to the constraint set, and the problems
are claimed to reduce to a series of transportation problems. The pur-
pose of this Appendix is to exhibit these transportation problems and

to prove the assertion true.

1. Minimization
The series of minimization problems to be solved for k# = 1,2, ...,
m are
Minimize Yi a
Variable
m j —
subject to > x..>D. j =1, ... n u
(=1 v J
n
- V% x .o 2- My, i=1,2, E-1 o,
i=1 J
n
”hyk - ,%1 Xy > 0 ; Problem D-1 <A
;=
My, = S x>0 b=k+1, ...n o,
j=1 Y
0>-1+3, ; =1, L k-1 =
“y, 215 1=k, ,m J o,
x”:}’lzo ’
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where y is the given value of the ith 0 - 1 variable in the initial
feasible solution and the other symbols are as defined previously

tliroughout this dissertation.

The dual variables corresponding to each of the contraints are
listed beside the constraints., In terms of this notation, the dual

problem 1s

Maximize > Dm - 32 Mf; o+ Z (y -1 - 2 o W
j=1 J 7 =1 Vvl i= ' ! =
subject to TPy <0 5, 1=1 ...mj=1 ... n
Problem D-1T
?
Mo, ~op <1
Ml.,oi—criio ; i=k+1, ... n
T Py Oy > 0 ; for all i, j y

Examination of Problem D-I shows that, at optimality,

Y °

M =

lxk]/Mk !

¥
’

since the objective is to minimize y, so that the constraint,

My,

will be satisfied with equality. If we make this substitution for y,

and substitute 1 for all y, for which 1 > k, we have the following

problem:
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1 n \
Minimize — 2 x,
Mk):l J
subject to »?l X oz D] j=1,2 ... n
n B > Problem D-T11
- 2 x > - My L= 1, k-1
;=1 iy - [
2 ox > - M 1=k, k+1, ..M
] kj i
x,. >0 for all 1, j
! J
Here 7y, = 0 or 1 and are given for each 1 < k.
The dual of problem D-TII 1is: i
\
n k—1 n
Maximize 3 D7’ - 2 Mypo - 2 Mp'
i=1 J i=1 AR (=1 (A
subject to Tg - p: < 0 j=1, ...n; 1 =1, ... k=1, k+1, ... n
. Problem D-1V
7m0 S ]Z_ j =1, n
k
7ot >0 all 1, j

J

where the primes indicate that the dual variables in Problem D-IV may
have different values than those in Problem D-I1. 1In fact, according

to the following Theorem, the two problems are related:

Theorem. Problems D-1 and D-1I1 are equivalent problems having the
same value of the objective function. The dual variables for these

problems satisfy the following relations:

77 = 7! ; J= 1 ... n
j j
g e ; L7k
"oy 1
P, T P t—




Proof. It was pointed out above that for Problem D-1,

(2]

X

yk N |

1
M, kJ

at optimality. The right-hand side is also the form of the objective

function for Problem D-ITI. Tt remains to be shown that the objective
functions are equal. Examination of Problems D-I and D-TI1 shows that
the constraints are identical for all i < k. For i > k, since x,; >0

and since y can range from 0 to 1, the constraints

But this is precisely the constraint in Problem D-111. Hence, since
the constraints i1n the two problems are equivalent, the problems must

have equal minima.

By the duality theory of linear pregramming, the objective func-
tions of Problem D-I and 1ts dual, Problem D-11, are equal at optimality.
Similarly, the objective functions of Problems D-I1 and D-1V are equal
at optimality. Since the objective functions of Problems D-T and D-TII
are also equal at optimality, we conclude that the objective functions

of Problems D-11 and D-IV must be equal at optimality. That 1is,

n k-1 E— 1 M
= 2 Dn. - 2 Myp + 2 (y -1 - Z o ,
Y j=1 J o J (=1 Lyl/(I = Y v —_— t
1 n n k=1 n
_ 2 = 2 pnt - My + Z Mpg!
M, ;=1 Tk j=1 7 i=1 2 (=1 s
19



Suppose that we have solved Problem D-IV.

77 = g’ :
J j

o, = L. for
AN 1

p}z ’Uk Mk

o, e Ml

and
o = 0 for

13

If we set

then the objective functions of Problems D-1IV and D-IT1 are equal. We

must still show that the constraints of Problem D-1] are satisfied.

Since
ﬂ; - p&' < 0 for i 7k, all ; ,
substituting 7 and ¢, yields
- e < 0 for i F ok, all j
Since
i i ( 1 v .
T -M: for all j ,

substituting 7,

WJ - (pk -
or
PR
Substituting
! 1 d
P, T L, *—— an
k k ",
implies
Mg =0y = M

1
M,

and o, = (I/Mk) for W; and g yields

k
1
EO—
Mk
0
(o} = Mk/q’;
kp; = 1.



HP.n(‘P
Mepy —op =1
is satisfied. Finally, substituting o, = Mlp; = M p, for v > k shows
that M, 0, = o, < 0 is satisfied, which completes the proof.
2. Maximization
For maximization an entirely analogous argument holds. For con-

venience, the maximization of y, will be written in its equivalent form

as the minimization of (-y,). The primal problem is

Minimize (- y,)

" N
subject to 2. % > D} , J =1 ...n
=1 YT
-2 x> =My, 1= 1, E-1
j=1 tj v
Moy, - ng T 2 0 ) > Problem D-V
My - 2 x.. > 0 , 1= k+1, no;
vy j=1
-y, 2 -1 ) i=k+1, n
)
>
XY 2 0
The dual of Problem D-V is
\
n k-1 n
Maximize 2 D7. - 2 Myp - 3 «© ,
j=1 77 =1 Tt TR+l Ot
subject to TR < 0 , 1 =1, m, j =1, n
Problem D-VI
N S
MJTL"Ol < 0 R 1=k +1, m N
7, o > 0
7 i - )
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As in minimization,

Myy,

at optimality,

n

S ox,

j= J ’

and the following equivalent problem and its dual cun be written:

o 1
Minimize - —
Mk

subject to n
>

=1

n

- 2

J=1

n

- 2z

J=1

n
Maximize 2 Djﬂ; -

;=1

subject to
! '
L >0
[ ’
mo- e 2 -
m,op 200

The following Theorem

D-VIT.

n

v

v

| v

shows the relation

j =1, n
i =1, k-1
i =k, k+1,
"o
k-1, R+ 1, ..oon
n
n
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> Problem D-VI11

between Problems D-V and



Theorem. Problems D-V and D-VIl are equivalent problems having
the same value of the objective function. The dual variables for these

problems satisfy the following relations:

meo= o , j =1, ... n ;
P = /O: ) 3 % k ’
, 1
Py = P - E )
o, = Mp] .12k
o = 0 i < k

Proof. The proof of this theorem is identical to that for the
previous theorem, except for showing the relations between primed and

unprimed dual variables.
Assume that Problem D-VIII has been solved. We first show that

Py ~ 2 0

1
Mk
Assume that o' - (1/M,)< 0. Then, since 7' < p! -(1/M,)is satisfied,

k k j - k k

the assumption implies that W; < 0. This i1s a contradiction, because

W; > 0.. Hence p, > 0.

Since ' - p' < 0 for i # k and all j, substituting 7 and o, vields
o= p, 20 for i # k and all j. For ¢« = k, 7] - pp < -(1/M). Substi-
tuting forﬂ; and p; yields - [pk + A/M)] < -(1/M,) or Tom Py S 0.

Substituting for p, and o, yields
; : ! L
Mepy = o = Moy - v Moy = -1
k

and substituting for p, and o (v > k) yields M o, - Mo, = 0.
Hence, all constraints involving o  are satisfied, which completes the

proof.
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